Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)
nên ΔBEM vuông cân tại M
b: ME\(\perp\)BC
NF\(\perp\)BC
Do đó: ME//NF
Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)
nên ΔCNF vuông cân tại N
=>CN=NF
CN=NF
BM=ME
CN=NM=MB
Do đó: CN=NF=BM=ME=NM
Xét tứ giác NMEF có
NF//ME
NF=ME
Do đó: NMEF là hình bình hành
Hình bình hành NMEF có NM=NF
nên NMEF là hình thoi
Hình thoi NMEF có \(\widehat{FNM}=90^0\)
nên NMEF là hình vuông