Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)
=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=100-36=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC=IB
IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)
Ta có: \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
=>\(\hat{AED}=\hat{ABC}\)
\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AI⊥DE tại K
=>\(\hat{AKE}=90^0\)

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)
=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=100-36=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC=IB
IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)
Ta có: \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
=>\(\hat{AED}=\hat{ABC}\)
\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AI⊥DE tại K
=>\(\hat{AKE}=90^0\)

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)
\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK
Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)
Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp
\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)
\(\Rightarrow\)\(AI\parallel KD\)
Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)
BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)
\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành
mà \(IA=IK\Rightarrow IKDA\) là hình thoi