Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE

A B C H M N
a) Nối AM
Do BA = BM => △ABM cân tại A
=> BAM = BMA
Ta có: BAM + MAN = 90o => BMA + MAN = 90o
Lại có: MAN + AMN = 90o (△MAN vuông tại N)
=> HMA = NMA
Xét △HMA và △NMA có:
MHA = MNA (= 90o)
AM: chung
HMA = NMA (cmt)
=> △HMA = △NMA (ch-gn)
=> AH = AN (2 cạnh tương ứng)
=> △AHN cân tại A
b) Xét △ABC vuông tại A
=> BC2 = AB2 + AC2 (định lí Pytago)
=> AB2 + AC2 + AH > AB2 + AC2
=> BC + AH > AB + AC
c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:
Xét △HAC vuông tại H
=> AC2 = HC2 + HA2 (định lí Pytago)
=> HC2 = AC2 - HA2
Xét △BHA vuông tại H
=> AB2 = HB2 + HA2 (định lí Pytago)
=> HB2 = AB2 - HA2
Khi đó:
CH2 - BH2 = AC2 - HA2 - AB2 + HA2
=> CH2 - BH2 = AC2 - AB2
=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)