Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

Cho tam giác ABC vuông tại a . Điểm M bất kì trên AC . Kẻ CH vuông góc với tia BM tại H và tia BA tại O. Gọi I là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với MI , cắt OB và OC thứ tự tại P và Q . Chứng minh M là trung điểm của PQ

a) Xét tam giác EBD và tam giác ABC ta có: \(\hept{\begin{cases}\widehat{EBD}-chung\\\widehat{DEB}=\widehat{BAC}\left(=90\right)\end{cases}}\)
\(\Rightarrow|\Delta EBD~\Delta ABC\left(g.g\right)\)
b) Từ 2 tam giác đồng dạng trên, ta có: \(\frac{EB}{AB}=\frac{BD}{BC}\Rightarrow BE.BC=BD.DA\left(dpcm\right)\)
c Xét tam giác BEA và tam giác BDC ta có: \(\hept{\begin{cases}\frac{EB}{AB}=\frac{BD}{BC}\left(cmt\right)\\\widehat{B}-chung\end{cases}}\)
\(\Rightarrow\Delta BEA~\Delta BDC\left(c.g.c\right)\Rightarrow\widehat{BAE}=\widehat{BCD}\left(dpcm\right)\)
a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
Xét ΔABC vuông tại A có AE là đường cao
nên AE^2=BE*CE
b: Xét tứ giác AEDC có
góc AEC=góc ADC=90 độ
=>AEDC là tứ giác nội tiếp
=>góc EAD=góc BCO