Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tự vẽ hình :)
a) Ta có: \(HK\perp AC;AB\perp AC\Rightarrow AB//HK\left(đpcm\right)\)
b) Tam giác AIK có AH vừa là đường cao vừa là đường trung tuyến nên tam giác AKI cân tại A
Cách khác: Xét tam giác KHA và tam giác IHA ( c-g-c )
\(\Rightarrow AK=AI;\widehat{AKI}=\widehat{AIK}\)
Nên tam giác AKI cân tại A
c) Ta có tam giác AKI cân tại A ( cmt )
\(\Rightarrow\widehat{IKA}=\widehat{AIK}\)mà 2 góc này ở vị trí so le trong
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\left(đpcm\right)\)
d) Xét tam giác AIC và tam giác AKC là ra nha bạn :))))))))))))))

a: (x-2)(x+3)>0
TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)
TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)
=>x<-3
b: (2x-1)(-x+1)>0
=>(2x-1)(x-1)<0
TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)
=>\(\frac12
TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)
=>x∈∅
c: (x+1)(3x-6)<0
=>3(x+1)(x-2)<0
=>(x+1)(x-2)<0
TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1
TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)
=>x∈∅

a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Ta có: ABC + ABE = 180o (2 góc kề bù) và ACB + ACN = 180o (2 góc kề bù)
=> ABE = ACN
Xét △ABE và △ACN
Có: AB = AC (cmt)
ABE = ACN (cmt)
BE = CN (gt)
=> △ABE = △ACN (c.g.c)
=> AE = AN (2 cạnh tương ứng)
=> △AEN cân tại A
b, Xét △HBE vuông tại H và △KCN vuông tại K
Có: BE = CN (gt)
HEB = KNC (△ABE = △ACN)
=> △HBE = △KCN (ch-gn)
A B C K H I
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)