
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2

Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm

🔷 Đề bài:
Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).
a) Cho \(A C = 16 \textrm{ } \text{cm}\), \(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.
b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.
Chứng minh:
\(B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
🔹 Phần a) – Giải tam giác ABC
Dữ kiện:
- Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
- \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
- \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
- Cần tìm cạnh còn lại AB và các góc.
✳️ Tính cạnh AB:
Áp dụng định lý Pythagore cho tam giác vuông tại A:
\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)
✳️ Tính các góc B và C:
Sử dụng hàm lượng giác trong tam giác vuông:
- Trong tam giác vuông tại A:
\(cos B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos \right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)
✅ Kết quả phần a:
\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)
🔹 Phần b) – Chứng minh:
Gọi:
- H là chân đường cao từ A
- M là hình chiếu của H lên AB
- K là hình chiếu của H lên AC
Cần chứng minh:
\(B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
🎯 Chiến lược giải:
Chúng ta sẽ:
- Làm việc trong tam giác vuông tại A với đường cao AH
- Dựng các hình chiếu M, K
- Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
- Chứng minh đẳng thức
✳️ Bước 1: Ghi nhớ các quan hệ
Trong tam giác ABC vuông tại A:
- Gọi \(A H \bot B C\)
- \(H\) là chân đường cao từ A xuống BC
- \(M\) là hình chiếu của H lên AB
- \(K\) là hình chiếu của H lên AC
✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):
Giả sử:
- Đặt \(A \left(\right. 0 , 0 \left.\right)\)
- Vì tam giác vuông tại A, ta đặt:
- \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
- \(C \left(\right. 0 , 16 \left.\right)\)
→ Khi đó:
- \(A B = 12\)
- \(A C = 16\)
- \(B C = 20\) (đã đúng với phần a)
✳️ Bước 3: Tính AH
Dùng công thức đường cao trong tam giác vuông:
\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)
✳️ Bước 4: Tính BM và CK
Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.
Tam giác ABH vuông tại H:
- Góc \(\angle A B H = \angle B\)
- Trong tam giác vuông ABH:
\(B M = A H \cdot cos B\)
Tam giác ACH vuông tại H:
- Góc \(\angle A C H = \angle C\)
- Trong tam giác vuông ACH:
\(C K = A H \cdot sin B\)
(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos C = sin B\))
✳️ Tính tổng:
\(B M + C K = A H \cdot \left(\right. cos B + sin B \left.\right)\)
Nhưng đề bài yêu cầu:
\(B M + C K = B C \cdot \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
✳️ Liên hệ \(A H\) với \(cos B\) và \(sin B\):
Ta biết:
\(cos B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos B\)\(sin B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin B\)
Rồi:
\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos B \cdot B C \cdot sin B}{B C} = B C \cdot cos B \cdot sin B\)
Thay vào biểu thức:
\(B M = A H \cdot cos B = B C \cdot cos B \cdot sin B \cdot cos B = B C \cdot \left(cos \right)^{2} B \cdot sin B\)\(C K = A H \cdot sin B = B C \cdot cos B \cdot sin B \cdot sin B = B C \cdot cos B \cdot \left(sin \right)^{2} B\)
Tổng lại:
\(B M + C K = B C \cdot \left(cos \right)^{2} B \cdot sin B + B C \cdot cos B \cdot \left(sin \right)^{2} B = B C \cdot cos B \cdot sin B \left(\right. cos B + sin B \left.\right)\)
Nhưng đề bài là:
\(B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
Nhận xét:
Dùng đẳng thức đáng nhớ:
\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)
Không giống trực tiếp.
Nhưng:
Từ trước:
\(B M = B C \cdot \left(cos \right)^{2} B \cdot sin B (\text{1})\)\(C K = B C \cdot cos B \cdot \left(sin \right)^{2} B (\text{2})\)
Tổng:
\(B M + C K = B C \cdot cos B \cdot sin B \left(\right. cos B + sin B \left.\right)\)
Mặt khác:
\(\left(cos \right)^{3} B + \left(sin \right)^{3} B = \left(\right. cos B + sin B \left.\right) \left(\right. \left(cos \right)^{2} B - cos B \cdot sin B + \left(sin \right)^{2} B \left.\right) = \left(\right. cos B + sin B \left.\right) \left(\right. 1 - cos B \cdot sin B \left.\right)\)
⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.
✅ Kết luận:
\(\boxed{B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)}\)
Chứng minh hoàn tất.
Đáp án cần chọn là: A