K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AC=\dfrac{4AB}{3}=\dfrac{4.15}{3}=20\left(cm\right)\)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC=12\left(cm\right)\)

\(\Leftrightarrow AB=9\left(cm\right)\)

hay AH=7,2(cm)

17 tháng 9 2021

AB=3/4AC 

Theo pytago ta có: AB²+AC²=BC²

(¾AC)²+AC²=15² 

=>AC=12 

=>AB=¾.12=9 

AB.AC=AH.BC( HỆ THỨC LƯỢNG)

=>AH=7.2

 

 

 

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
20 tháng 8 2019

a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)

Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)

b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)

            \(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)

20 tháng 8 2019

A B C H

a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2 

áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:

BC^2=AB^2+AC^2

         =15^2+20^2

         = 225+400

         =625

BC    = căn 625=25

Vì ABC là tam giác vuông nên

áp dụng hệ thức lượng, ta dc

      AB^2=HB*BC

hay 15^2=HB*25

        HB=225/25=9

=)HC=25-9=16

và AH^2=HB*HC

             =9*16=144

   AH=căn 144=12

câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN

MK vẽ hình hơi xấu bn thông cảm hihi

19 tháng 8 2018

Hình tự vẽ

a) Ta có: AB : AC = 3 : 4

=>  \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

=>  \(AB=9;\)\(AC=12\)

Áp dụng Pytago ta có:

BC2 =AB2 + AC2

<=>  BC= 92 +  12= 225

<=> BC = 25

b)  Áp dụng hệ thức lượng ta có:

\(AH.BC=AB.AC\)

=>    \(AH=\frac{AB.AC}{BC}=7,2\)

\(AB^2=BH.BC\)

=> \(BH=\frac{AB^2}{BC}=5,4\)

=>  \(CH=BC-BH=9,6\)

19 tháng 8 2018

Hình tự vẽ

a) Ta có: AB : AC = 3 : 4

=>  \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

=>  \(AB=9;\)\(AC=12\)

Áp dụng Pytago ta có:

BC2 =AB2 + AC2

<=>  BC= 92 +  12= 225

<=> BC = 25

b)  Áp dụng hệ thức lượng ta có:

\(AH.BC=AB.AC\)

=>    \(AH=\frac{AB.AC}{BC}=7,2\)

\(AB^2=BH.BC\)

=> \(BH=\frac{AB^2}{BC}=5,4\)

=>  \(CH=BC-BH=9,6\)

19 tháng 8 2018

Hình tự vẽ

a) Ta có: AB : AC = 3 : 4

=>  \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

=>  \(AB=9;\)\(AC=12\)

Áp dụng Pytago ta có:

BC2 =AB2 + AC2

<=>  BC= 92 +  12= 225

<=> BC = 25

b)  Áp dụng hệ thức lượng ta có:

\(AH.BC=AB.AC\)

=>    \(AH=\frac{AB.AC}{BC}=7,2\)

\(AB^2=BH.BC\)

=> \(BH=\frac{AB^2}{BC}=5,4\)

=>  \(CH=BC-BH=9,6\)

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

12 tháng 7 2023

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{\dfrac{3}{4}AB^2}\\ \to\dfrac{1}{AB^2}+\dfrac{4}{3AB^2}=\dfrac{1}{23,04}\\ \to\dfrac{7}{3AB^2}=\dfrac{1}{23,04}\\ \to AB^2=53,76\\ \to AB=\dfrac{8\sqrt{21}}{5}\left(cm\right)\\ \to AC=\dfrac{32\sqrt{21}}{15}\left(cm\right)\\ \to BC=\sqrt{AB^2+AC^2}=\dfrac{8\sqrt{21}}{3}\left(cm\right)\)

Hệ thức lượng:

\(HB=\dfrac{AB^2}{BC}=\dfrac{24\sqrt{21}}{25}\left(cm\right)\\ HC=\dfrac{AC^2}{BC}=\dfrac{7168-200\sqrt{21}}{75}\left(cm\right)\)