K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
\(\hat{DAH}\) chung
Do đó: ΔADH~ΔAHB
=>\(\frac{AD}{AH}=\frac{AH}{AB}\)
=>\(AD\cdot AB=AH^2\left(1\right)\)
=>\(AD=\frac{AH^2}{AB}\)
Xét ΔAEH vuông tại E và ΔAHC vuông tại H có
\(\hat{EAH}\) chung
Do đó: ΔAEH~ΔAHC
=>\(\frac{AE}{AH}=\frac{AH}{AC}\)
=>\(AE\cdot AC=AH^2\left(2\right)\)
=>\(AE=\frac{AH^2}{AC}\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
=>\(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\frac{AD}{AC}=\frac{AE}{AB}\)
Do đó: ΔADE~ΔACB
b:
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\frac{HA}{AC}=\frac{BA}{BC}\)
=>\(AH\cdot BC=AB\cdot AC\)
ΔADE vuông tại A
=>\(S_{ADE}=\frac12\cdot AD\cdot AE=\frac12\cdot\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac12\cdot\frac{AH^4}{AB\cdot AC}=\frac12\cdot\frac{AH^4}{AH\cdot BC}=\frac12\cdot\frac{AH^3}{BC}\)
=>\(S_{ADE}=\frac12\cdot\frac{8^3}{20}=\frac12\cdot\frac{512}{20}=\frac{256}{10}=25,6\left(\operatorname{cm}^2\right)\)