K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

sai hay đúng?

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo Vy phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: AMHN là hình chữ nhật

=>HM//AN và HM=AN

HM//AN

=>HM//ND

HM=AN

AN=ND

Do đó: HM=ND

Xét tứ giác HMND có

HM//ND

HM=ND

Do đó: HMND là hình bình hành

c: ΔABC vuông tại A

mà AO là đường trung tuyến

nên AO=OB=OC

OA=OC

=>ΔOAC cân tại O

=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)

AMHN là hình chữ nhật

=>\(\hat{ANM}=\hat{AHM}\)

\(\hat{AHM}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{ANM}=\hat{ABC}\)

\(\hat{ANM}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AO⊥MN

mà MN//HD(MHDN là hình bình hành)

nên AO⊥HD tại E

=>ΔEAH vuông tại E

Gọi I là giao điểm của AH và MN

AMHN là hình chữ nhật

=>AH=MN

AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>I là trung điểm chung của AH và MN

Ta có: \(IA=IH=\frac{AH}{2}\)

\(IM=IN=\frac{MN}{2}\)

mà AH=MN

nên \(IA=IH=IM=IN=\frac{AH}{2}=\frac{MN}{2}\)

ΔAEH vuông tại E

mà EI là đường trung tuyến

nên \(EI=\frac{AH}{2}=\frac{MN}{2}\)

Xét ΔEMN có

EI là đường trung tuyến

\(EI=\frac{MN}{2}\)

Do đó: ΔEMN vuông tại E

=>EM⊥NE

a) Xét ∆ vuông ABC có 

AM là trung tuyến 

=> AM = BM = CM 

=> ∆AMC cân tại M 

=> MAC = MCA 

Xét ∆ABH có : 

BHA + BAH + ABH = 180° 

=> BAH + ABH = 90° 

Xét ∆ABC có : 

ABC + BCA + BAC = 180° 

=> ABC + ACB = 90° 

=> BAH = MCA 

Mà MAC = MCA (cmt)

=> BAH = MAC 

b) Gọi I là giao điểm DE và AH 

Xét tứ giác DHEA có : 

BAC = 90° (gt)

MDA = 90° ( MD\(\perp\)AB )

HEA = 90° ( HE\(\perp\)AC)

=> DHEA là hình chữ nhật 

=> I là trung điểm DE và HA 

=> DI = IA 

=> ∆IDA cân tại I

=> IDA = IAD (1)

Vì MAC = MCA (2) (cmt)

Ta có : 

DAI + MAC = 90° 

MCA + MAC = 90° 

=> DAI = MCA ( cùng phụ với MAC )(3)

Từ (1) (2)(3) 

=> DAI = MAC = MCA 

Vì I là trung điểm DE 

=> ∆IAE cân tại I 

=> IAE = IEA 

Gọi giao điểm DE,AM là O 

Xét ∆ADE có : 

DAE + ADE + DEA = 180° 

=> ADE + DEA = 90° .

Mà IAE = IEA (cmt)

MAC = ADI (cmt)

=> MAE + IEA = 90° 

Xét ∆IAE có : 

IAE + IEA + AIE = 180° 

=> AIE = 90° 

Hay AM \(\perp\)DE(dpcm)