Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: HE⊥AC
AB⊥ AC
Do đó: HE//AB
Xét ΔCAN có EI//AN
nên \(\frac{EI}{AN}=\frac{CI}{CN}\left(1\right)\)
Xét ΔCBN có IH//NB
nên \(\frac{IH}{NB}=\frac{CI}{CN}\left(2\right)\)
N là trung điểm của AB
=>NA=NB(3)
Từ (1),(2),(3) suy ra EI=IH
=>I là trung điểm của EH
Xét tứ giác NETH có
I là trung điểm chung của NT và EH
=>NETH là hình bình hành

A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là tứ giác nội tiếp
=>\(\hat{ANM}=\hat{AHM}\)
mà \(\hat{AHM}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{ANM}=\hat{ABC}\)
ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)
\(\hat{ANM}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AI⊥MN
Ok bro, ngắn gọn nè:
Xong!