Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N là hình chiếu của H trên A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là tứ giác nội tiếp

=>\(\hat{ANM}=\hat{AHM}\)

\(\hat{AHM}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{ANM}=\hat{ABC}\)

ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

\(\hat{ANM}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥MN

12 tháng 8

Ok bro, ngắn gọn nè:

  • Đặt \(A = \left(\right. 0 , 0 \left.\right) , B = \left(\right. b , 0 \left.\right) , C = \left(\right. 0 , c \left.\right)\).
  • Tọa độ \(H\) trên \(B C\)\(\left(\right. \frac{b c^{2}}{b^{2} + c^{2}} , \frac{b^{2} c}{b^{2} + c^{2}} \left.\right)\).
  • \(M = \left(\right. x_{H} , 0 \left.\right)\), \(N = \left(\right. 0 , y_{H} \left.\right)\), \(I = \left(\right. \frac{b}{2} , \frac{c}{2} \left.\right)\).
  • Tính tích vô hướng \(\overset{\rightarrow}{A I} \cdot \overset{\rightarrow}{M N} = 0\)\(A I \bot M N\).

Xong!

Ta có: HE⊥AC

AB⊥ AC

Do đó: HE//AB

Xét ΔCAN có EI//AN

nên \(\frac{EI}{AN}=\frac{CI}{CN}\left(1\right)\)

Xét ΔCBN có IH//NB

nên \(\frac{IH}{NB}=\frac{CI}{CN}\left(2\right)\)

N là trung điểm của AB

=>NA=NB(3)

Từ (1),(2),(3) suy ra EI=IH

=>I là trung điểm của EH

Xét tứ giác NETH có

I là trung điểm chung của NT và EH

=>NETH là hình bình hành

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy