K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

DE và CA cùng vuông góc với AB, do đó

DE // AC.

Theo định lí Ta-lét, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tương tự, ta có: DF // AB, do đó:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cộng các vế tương ứng của (1) và (2), ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tổng Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thay đổi vì luôn có giá trị bằng 1.

Vậy : Khi độ dài cạnh góc vuông AB, AC của tam giác vuông ABC thay đổi thì tổng Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 luôn luôn không thay đổi. Tổng đó luôn có giá trị bằng 1.

a: Xét ΔAED vuông tại E và ΔADB vuông tại D có

\(\hat{EAD}\) chung

Do đó: ΔAED~ΔADB

=>\(\frac{AE}{AD}=\frac{AD}{AB}\)

=>\(AE\cdot AB=AD^2\left(1\right)\)

Xét ΔAFD vuông tại F và ΔADC vuông tại D có

\(\hat{FAD}\) chung

Do đó: ΔAFD~ΔADC

=>\(\frac{AF}{AD}=\frac{AD}{AC}\)

=>\(AF\cdot AC=AD^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

12 tháng 8

giúp mik câu b vs pls

26 tháng 11 2021

 

Lý thuyết: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

 

 

 

26 tháng 11 2021

uk

18 tháng 12 2023

a: Ta có: EG\(\perp\)AC

BD\(\perp\)AC

Do đó: EG//BD

Xét ΔABD có EG//BD

nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)

=>\(AE\cdot AD=AB\cdot AG\)(1)

Ta có: DF\(\perp\)AB

CE\(\perp\)AB

Do đó: DF//CE

Xét ΔAEC có DF//CE

nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)

=>\(AD\cdot AE=AC\cdot AF\)(2)

Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)

b: AB*AG=AC*AF

=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

nên FG//BC

\(AE\cdot AB=AH^2\)

nên \(\dfrac{AE\cdot AB}{AB^2}=\dfrac{AH^2}{AB^2}\)

\(\Leftrightarrow\dfrac{AE}{AB}=\dfrac{AH^2}{AB^2}\)

\(AF\cdot AC=AH^2\)

\(\Leftrightarrow\dfrac{AF\cdot AC}{AC^2}=\dfrac{AH^2}{AC^2}\)

hay \(\dfrac{AF}{AC}=\dfrac{AH^2}{AC^2}\)

\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=AH^2\left(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\right)=AH^2\cdot\dfrac{BC^2}{AB^2\cdot AC^2}\)

\(=AH^2\cdot\dfrac{BC^2}{\left(AB\cdot AC\right)^2}=AH^2\cdot\dfrac{BC^2}{\left(AH\cdot BC\right)^2}=1\)