K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

a,DoΔvuông AHC có:

AH2=AE.AC (1)

Δ vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest ΔAED và ΔABC có:

BAC^chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

17 tháng 9 2021

a) ΔABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

ΔAHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

câu b) bn tự làm nhé

13 tháng 6 2016

đây là hình nhé, để cung cấp cho cách giải:

 
A) 

Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

13 tháng 6 2016

B) 

Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

18 tháng 9

Bài toán:

Tam giác ABC vuông tại A, đường cao AH hạ từ A xuống BC. Biết:

  • HB = 64 mm
  • HC = 81 mm

Yêu cầu: Tính độ dài các cạnh góc vuông AB, AC và số đo góc B, C.


Phân tích:

Khi có đường cao AH từ đỉnh A vuông góc với BC, ta có các tam giác đồng dạng:

  • ΔABH ~ ΔAHC ~ ΔABC

Bước 1: Tính BC

Đường cao AH chia BC thành 2 đoạn:

  • HB = 64 mm
  • HC = 81 mm

Nên:

\(B C = H B + H C = 64 + 81 = 145 \&\text{nbsp};\text{mm}\)


Bước 2: Tính AH

Áp dụng hệ thức về đường cao trong tam giác vuông:

\(A H^{2} = H B \times H C\)

Thay số:

\(A H^{2} = 64 \times 81 = 5184 \Rightarrow A H = \sqrt{5184} = 72 \&\text{nbsp};\text{mm}\)


Bước 3: Tính AB và AC

Ta biết:

  • \(A B^{2} = B H \times B C\)
  • \(A C^{2} = C H \times B C\)

Vậy:

\(A B^{2} = 64 \times 145 = 9280 \Rightarrow A B = \sqrt{9280} \approx 96.3 \&\text{nbsp};\text{mm}\) \(A C^{2} = 81 \times 145 = 11745 \Rightarrow A C = \sqrt{11745} \approx 108.4 \&\text{nbsp};\text{mm}\)


Bước 4: Tính góc B và góc C

Áp dụng định nghĩa lượng giác trong tam giác vuông:

\(tan ⁡ B = \frac{A C}{A B} = \frac{108.4}{96.3} \approx 1.126\)

Tính góc B:

\(B = arctan ⁡ \left(\right. 1.126 \left.\right) \approx 48.3^{\circ}\)

Vì tam giác vuông tại A nên:

\(C = 90^{\circ} - B = 41.7^{\circ}\)


Kết quả:

  • \(A B \approx 96.3 \&\text{nbsp};\text{mm}\)
  • \(A C \approx 108.4 \&\text{nbsp};\text{mm}\)
  • \(\angle B \approx 48.3^{\circ}\)
  • \(\angle C \approx 41.7^{\circ}\)

HB=64mm=6,4cm

HC=81mm=8,1cm

BC=BH+CH=6,4+8,1=14,5(cm)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\frac{BH}{BA}=\frac{BA}{BC}\)

=>\(BH\cdot BC=AB^2\)

=>\(BA^2=6,4\cdot14,5=92,8\)

=>\(BA=\sqrt{92,8}=\frac{4\sqrt{145}}{5}\) (cm)

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(AC^2=145-\left(\frac{4\sqrt{145}}{5}\right)^2=\frac{261}{5}\)

=>\(AC=\sqrt{\frac{261}{5}}=\frac{3\sqrt{145}}{5}\) (cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{AC}=\frac{4\sqrt{145}}{5}:\sqrt{145}=\frac45\)

nên \(\hat{C}\) ≃53 độ

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{C}=90^0\)

=>\(\hat{ABC}=90^0-53^0=37^0\)

8 tháng 8 2016

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

Toán lớp 9

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)