Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,DoΔvuông AHC có:
AH2=AE.AC (1)
Δ vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest ΔAED và ΔABC có:
BAC^chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
a) ΔABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
ΔAHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
câu b) bn tự làm nhé

đây là hình nhé, để cung cấp cho cách giải:

Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
B)
Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

Bài toán:
Tam giác ABC vuông tại A, đường cao AH hạ từ A xuống BC. Biết:
- HB = 64 mm
- HC = 81 mm
Yêu cầu: Tính độ dài các cạnh góc vuông AB, AC và số đo góc B, C.
Phân tích:
Khi có đường cao AH từ đỉnh A vuông góc với BC, ta có các tam giác đồng dạng:
- ΔABH ~ ΔAHC ~ ΔABC
Bước 1: Tính BC
Đường cao AH chia BC thành 2 đoạn:
- HB = 64 mm
- HC = 81 mm
Nên:
\(B C = H B + H C = 64 + 81 = 145 \&\text{nbsp};\text{mm}\)
Bước 2: Tính AH
Áp dụng hệ thức về đường cao trong tam giác vuông:
\(A H^{2} = H B \times H C\)
Thay số:
\(A H^{2} = 64 \times 81 = 5184 \Rightarrow A H = \sqrt{5184} = 72 \&\text{nbsp};\text{mm}\)
Bước 3: Tính AB và AC
Ta biết:
- \(A B^{2} = B H \times B C\)
- \(A C^{2} = C H \times B C\)
Vậy:
\(A B^{2} = 64 \times 145 = 9280 \Rightarrow A B = \sqrt{9280} \approx 96.3 \&\text{nbsp};\text{mm}\) \(A C^{2} = 81 \times 145 = 11745 \Rightarrow A C = \sqrt{11745} \approx 108.4 \&\text{nbsp};\text{mm}\)
Bước 4: Tính góc B và góc C
Áp dụng định nghĩa lượng giác trong tam giác vuông:
\(tan B = \frac{A C}{A B} = \frac{108.4}{96.3} \approx 1.126\)
Tính góc B:
\(B = arctan \left(\right. 1.126 \left.\right) \approx 48.3^{\circ}\)
Vì tam giác vuông tại A nên:
\(C = 90^{\circ} - B = 41.7^{\circ}\)
Kết quả:
- \(A B \approx 96.3 \&\text{nbsp};\text{mm}\)
- \(A C \approx 108.4 \&\text{nbsp};\text{mm}\)
- \(\angle B \approx 48.3^{\circ}\)
- \(\angle C \approx 41.7^{\circ}\)
HB=64mm=6,4cm
HC=81mm=8,1cm
BC=BH+CH=6,4+8,1=14,5(cm)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\frac{BH}{BA}=\frac{BA}{BC}\)
=>\(BH\cdot BC=AB^2\)
=>\(BA^2=6,4\cdot14,5=92,8\)
=>\(BA=\sqrt{92,8}=\frac{4\sqrt{145}}{5}\) (cm)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC^2=145-\left(\frac{4\sqrt{145}}{5}\right)^2=\frac{261}{5}\)
=>\(AC=\sqrt{\frac{261}{5}}=\frac{3\sqrt{145}}{5}\) (cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{AC}=\frac{4\sqrt{145}}{5}:\sqrt{145}=\frac45\)
nên \(\hat{C}\) ≃53 độ
ΔABC vuông tại A
=>\(\hat{ABC}+\hat{C}=90^0\)
=>\(\hat{ABC}=90^0-53^0=37^0\)

1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2