Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AHKC có
I là trung điểm chung của CH và AK
nên AHKC là hình bình hành
=>AC//HK và AC=HK
b: AC//HK
AC//HM
mà HK,HM có điểm chung là H
nên M,H,K thẳng hàng
=>MK//CN
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
=>\(\widehat{NAH}=\widehat{NMH}\)
mà \(\widehat{CAH}=\widehat{CKH}\)
nên \(\widehat{CKH}=\widehat{NMK}\)
Xét tứ giác MNCK có NC//MK
nên MNCK là hình thang
Hình thang MNCK có \(\widehat{NMK}=\widehat{CKM}\)
nên MNCK là hình thang cân

a: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
b: AC//HK
AC//HM
HK cắt HM tại H
=>H,M,K thẳng hàng
=>NC//MK
AHKC là hình bình hành
=>góc CKH=góc CAH
mà góc CAH=góc NMH(AMHN là hình chữ nhật)
nên góc CKM=góc NMK
=>CNMK là hình thang cân
c: AMHN là hình chữ nhật
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là trung tuyến
CO cắt AI tại D
=>D là trọng tâm
=>AD=2/3AI=2/3*1/2*AK=1/3AK
=>AK=3AD

a)xét tam giác ABC có AD=DB, AE=EC => DE là đg` TB => DE//BC=> DE//BF
và DE=1/2BC=> DE= BF => BDEF là hbh
b) DE//BC => DE//KF => DEFK là hình thang(1)
DE//BC => DEF = EFC(SLT)
BDEF là hbh BD//EF => DBC=EFC (đồng vị) => DEF = DBC
DE//BC => EDK=DKB(SLT)
Xét tam giác ABK vg tại K có D là TĐ của AB=> KD là trung tuyến => KD=1/2AB=BD=> tam giác BDK cân tại D => DBC=DKB
=> KDE = DEF(2)
Từ (1) và (2) => DEFK là hình thang cân

A B C H M N K I O D
a/
Ta có
HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AC//HK (Trong hbh 2 cạnh đối // với nhau)
b/
Ta có
\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC
Mà HK//AC (cmt)
\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng
=> AC//MK => MNCK là hình thang
Ta có
AC//MK => AN//MH
\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{A}=90^o\)
=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)
Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)
=> MN=CK
=> hình thang MNCK có MN = CK => MNCK là hình thang cân
c/
Xét tg AHC có
OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)
HI=CI (gt)
=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)
Xét hình bình hành ACKH có
\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)
\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)
I là trung điểm của AK (gt)
I là trung điểm của HC (gt)
⇒ ACKH là hình bình hành
⇒ AC // HK
b) Do HM ⊥ AB (gt)
⇒ ∠AMH = 90⁰ (1)
Do HN ⊥ AC (gt)
⇒ ∠ANH = 90⁰ (2)
Do ∆ABC vuông tại A (gt)
⇒ ∠BAC = 90⁰
⇒ ∠MAN = 90⁰ (3)
Từ (1), (2) và (3) suy ra ∠MAN = ∠AMH = ∠ANH = 90⁰
Tứ giác AMHN có:
∠MAN = ∠AMH = ∠ANH = 90⁰ (cmt)
⇒ AMHN là hình chữ nhật
⇒ AN = HM
Xét hai tam giác vuông: ∆ANH và ∆MHN có:
AN = HM (cmt)
HN là cạnh chung
⇒ ∆ANH = ∆MHN (hai cạnh góc vuông)
⇒ ∠HAN = ∠HMN (hai góc tương ứng)
⇒ ∠HAC = ∠HMN
⇒ ∠HAC = ∠KMN (4)
Do ACKH là hình bình hành (cmt)
⇒ ∠HAC = ∠HKC
⇒ ∠HAC = ∠MKC (5)
Từ (4) và (5) suy ra ∠KMN = ∠MKC
Do AC // KH (cmt)
⇒ NC // KM
Tứ giác MNCK có:
NC // KM (cmt)
⇒ MNCK là hình thang
Mà ∠KMN = ∠MKC (cmt)
⇒ MNCK là hình thang cân
c) Do O là giao điểm của MN và AH (gt)
AMHN là hình chữ nhật (cmt)
⇒ O là trung điểm của AH
∆AHC có:
I là trung điểm của HC (gt)
⇒ AI là đường trung tuyến của ∆AHC (6)
O là trung điểm của AH (cmt)
⇒ CO là đường trung tuyến của ∆AHC (7)
D là giao điểm của CO và AK (gt)
⇒ D là giao điểm của CO và AI (8)
Từ (6), (7) và (8) suy ra D là trọng tâm của ∆AHC
Do I là trung điểm của AK (gt)
⇒ AK = 2AI
Hay AK = 3AD