K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2

 

Theo định lý Pytago ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên bán kính R = 25/2

24 tháng 6 2017

ta có : BC = 2R ; AD = AE = r

nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)

= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)

= AB + AC ( đpcm)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

a: xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)

nên \(\hat{BAC}=60^0\)

ΔACB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)

=>\(CB=R\sqrt3\)

c: Xét (O) có

MC,MB là các tiếp tuyến

Do đó: MC=MB

=>M nằm trên đường trung trực của CB(1)

ta có: OC=OB

=>O nằm trên đường trung trực của CB(2)

Từ (1),(2) suy ra MO là đường trung trực của CB

=>MO⊥CB

mà CA⊥CB

nên CA//OM

d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB

ΔACB vuông tại C

=>CA⊥CB tại C

=>CB⊥AK tại C

=>ΔKCB vuông tại C

Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)

\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)

\(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)

nên \(\hat{MCK}=\hat{MKC}\)

=>MC=MK

mà MC=MB

nên MB=MK(3)

ta có: KB⊥BA

CH⊥BA

DO đó: KB//CH

Xét ΔAMK có CI//MK

nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)

Xét ΔAMB có IH//MB

nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)

từ (3),(4),(5) suy ra CI=IH

=>I là trung điểm của CH

=>MA đi qua trung điểm I của CH

27 tháng 10 2019

r r r A B C M N P I

Gọi M, N, P lần lượt là tiếp điểm của (I;r) với AB; BC; AC

Có: \(AB+AC-BC=AM+MB-BN-NC+CP+PA\)

Mà \(MB=BN\)\(NC=CP\)\(AM=PA\)

=> \(AB+AC-BC=2AM\)

Xét tứ giác MIPA có 3 góc vuông => MIPA là hình chữ nhật

=> \(AM=IP=r\)

=> \(r=AM=\frac{AB+AC-BC}{2}\)

18 tháng 8 2017

Áp dụng bất đẳng thức cô si ta có :

b+c\(\ge2\)\(\sqrt{bc}\)\(\Rightarrow\)R(b+c)\(\ge2\)R.\(\sqrt{bc}\)\(\ge a\sqrt{bc}\)(quan hệ đường kính và dây cung 2R\(\ge\)BC=a)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}b=c\\BC=2R\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}CA=AB\\BC=2R\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\) vuông cân tại A

2 tháng 10 2017

Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}.AB.r+\frac{1}{2}.BC.r=\frac{1}{2}\)

\(AB+BC+CA.r=pr\)

P/s: Ko chắc

30 tháng 5 2018

Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).