K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a) Để chứng minh ADME là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- M là trung điểm của BC, nên BM = MC.

- MD vuông góc với AB, nên góc AMD = 90 độ.

- ME vuông góc với AC, nên góc AME = 90 độ.

 

Vậy ta có BM = MC, góc AMD = góc AME = 90 độ.

 

Từ đó, ta có thể kết luận rằng ADME là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.

 

b) Để chứng minh DBME là hình bình hành, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 180 độ.

 

Ta có:

- M là trung điểm của BC, nên BM = MC.

- MD vuông góc với AB, nên góc AMD = 90 độ.

- ME vuông góc với AC, nên góc AME = 90 độ.

 

Vậy ta có BM = MC, góc AMD = góc AME = 90 độ.

 

Từ đó, ta có thể kết luận rằng DBME là hình bình hành với các cạnh đối diện bằng nhau và các góc trong bằng 180 độ.

 

c) Để chứng minh DEMH là hình thang cân, ta cần chứng minh rằng các cạnh đáy của nó bằng nhau và các góc đáy của nó bằng nhau.

 

Ta có:

- M là trung điểm của BC, nên BM = MC.

- MD vuông góc với AB, nên góc AMD = 90 độ.

- ME vuông góc với AC, nên góc AME = 90 độ.

- H là giao điểm của đường cao AH và cạnh BC, nên AH vuông góc với BC.

 

Vậy ta có BM = MC, góc AMD = góc AME = 90 độ và AH vuông góc với BC.

 

Từ đó, ta có thể kết luận rằng DEMH là hình thang cân với các cạnh đáy bằng nhau và các góc đáy bằng nhau.

20 tháng 1 2022

hình bạn tự vẽ nhe

a, Xét tứ giác ADME có 3 góc vuông:\(MDA=DAE=MEA=90^o\)

do đó : ADME là hình chữ nhật.

b, Xét tam giác ABC có đường t.b ME (1)

lại có M là trung điểm BC và ME//DA 

=> D là trung điểm của AB (2)

từ (1) và (2) suy ra:

\(ME=\dfrac{1}{2}AB\)

hay ME=DB và ME//DB 

vậy tứ giác ADME là hình bình hành

c,

Xét tam giác EHD và tam giác EAD có 

DE cạnh chung 

AD=DH(gt)

góc HED = góc AED (gt)

do đó 2 tam giác EHD và EAD = nhau 

=> HE = AE ( 2 cạnh tương ứng )(3)

Xét hình chữ nhật ADME có :

DM= AE ( 2 cạnh đối = nhau )(4)

từ (3) và (4) suy ra :

HE=DM 

Xét tứ giác DEMH có :

HE =DM (cmt)

do đó : DEMH là hình thang cân ( 2 đường chéo = nhau ).

20 tháng 1 2022

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

 

22 tháng 11 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b:

MD\(\perp\)AB

AC\(\perp\)AB

Do đó: MD//AC

ME\(\perp\)AC

AB\(\perp\)AC

Do đó: ME//AB

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔBAC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔBAC

=>MD//AC và \(MD=\dfrac{AC}{2}\)

\(MD=\dfrac{AC}{2}\)

\(CE=\dfrac{AC}{2}\)

Do đó: MD=CE

MD//AC

\(E\in\)AC

Do đó: MD//CE

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\)

mà \(MD=\dfrac{AC}{2}\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

=>DHME là hình thang

Hình thang DHME có MD=HE

nên DHME là hình thang cân

18 tháng 11 2015

tick cho mình rồi mình giải cho

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K