Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tâm đường tròn ngoại tiếp tam giác ABC nằm trên trung điểm BC
=> Tâm đường tròn là điểm M

a: O là trung điểm của BC
b: Xét \(\left(\dfrac{BH}{2}\right)\) có
ΔBDH là tam giác nội tiếp
BH là đường kính
Do đó: ΔBDH vuông tại D
Xét \(\left(\dfrac{CH}{2}\right)\)có
ΔCHE nội tiếp đường tròn
CH là đường kính
Do đó: ΔCHE vuông tại E
Xét tứ giác ADHE có
\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật

Gọi O là trung điểm BC
Ta có: Tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC có cạnh huyền BC là đường kính và O là tâm đường tròn
=> Bán kính là OA,OB,OC

a. gọi M là trung điểm BC
△ ABC vuông tại A có AM là đường trung tuyến
\(\Rightarrow MA=MB=MC=\frac12BC\)
⇒ đường tròn có tâm M đi qua 3 đỉnh của △ ABC
độ dài cạnh BC là:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(\operatorname{cm}\right)\)
bán kính đường tròn đó là:
\(R=\frac{25}{2}=12,5\left(\operatorname{cm}\right)\)
b. gọi O là giao điểm của 2 đường chéo AC và BD
vì ABCD là hình vuông nên ta có: OA = OB = OC = OD = \(\frac12AC=\frac12BD\)
⇒ đường tròn có tâm O đi qua 4 đỉnh A,B,C,D
độ dài cạnh BD là:
\(BD=\sqrt{AD^2+AB^2}=\sqrt{12^2+12^2}=12\sqrt2\left(\operatorname{cm}\right)\)
bán kính của đường tròn đó là:
\(R=\frac{12\sqrt2}{2}=6\sqrt2\left(\operatorname{cm}\right)\)

Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10
Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2
AB2+AC2=100 (Pytago)
Giải pt ra, ta được: (AB;AC)=(6;8)
=> AB+AC=14