K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

30 tháng 11 2017
a , xetys tứ giác adme có :
me//ad (vì me//ac)
md//ae(vì md//ab)
suy ra tứ giác adme là hbh

30 tháng 12 2021
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB
hay ABNM là hình thang

TS
8 tháng 5 2016
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a) Xét tứ giác ADME có
ME//AD(gt)
MD//AE(gt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ADME là hình chữ nhật(cmt)
nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)
mà ED=5cm(gt)
nên AM=5cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(gt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(AH⊥BC tại H)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Ta có: ΔAHC vuông tại H(AH⊥BC tại H)
mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên HE=AE
Xét ΔEAD và ΔEHD có
EA=EH(cmt)
ED chung
AD=HD(cmt)
Do đó: ΔEAD=ΔEHD(c-c-c)
⇒\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)
mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)
nên \(\widehat{EHD}=90^0\)
hay HD⊥HE(đpcm)