Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn tự vẽ hình nhá!
giải
a) ÁP DỤNG ĐỊNH LÝ PI-TA GO-VÀ \(\Delta\)VUÔNG ABC TA CÓ:
\(AB^2\)\(+\)\(AC^2\)\(=\)\(BC^2\)
\(\Rightarrow\)\(3^2\)\(+\)\(4^2\)\(=\)\(BC^2\)
\(\Rightarrow9+16=BC^2\)
\(\Rightarrow25=BC^2\)
\(\Rightarrow5=BC\)
ÁP DỤNG HỆ THỨC 3 VÀO \(\Delta\)ABC TA CÓ:
AB.AC=BC.CH\(\Rightarrow\)AH=\(\frac{AB.AC}{BC}\)=\(\frac{3.4}{5}\)=2,5
ÁP DỤNG HỆ THỨC LƯỢNG TRONG TAM GIÁC TA CÓ:
\(AB^2=BC.BH\)\(\Rightarrow BH=\frac{AB^2}{BC}\)=\(\frac{3^2}{5}=1,8\)
\(AC^2=BC\times CH\Rightarrow HC=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

a. Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu: Tam giác AHB có \(HB^2=BE\cdot BA,\) tam giác AHC có
\(HC^2=CF\cdot CA\to\frac{BE}{FC}\cdot\frac{AB}{AC}=\frac{HB^2}{HC^2}=\frac{\left(HB\cdot BC\right)^2}{\left(HC\cdot BC\right)^2}=\frac{AB^4}{AC^4}\to\frac{BE}{CF}=\frac{AB^3}{AC^3}.\)
b.
Cách giải lớp 9
Ta có \(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\cos B\cdot\cos C\cdot\left(\frac{HB}{AH}+\frac{HC}{AH}\right)=\cos B\cdot\cos C\cdot\left(\tan B+\tan C\right)\)
\(=\sin B\cdot\cos C+\cos B\cdot\sin C=\sin^2B+\cos^2B=1.\) (Ở đây chú ý rằng \(\cos B=\sin C,\sin B=\cos C\) ).
Suy ra \(BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^2\cdot AH=AH^3.\)
Cách giải lớp 8
\(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\frac{BA}{BC}\cdot\frac{CA}{BC}\cdot\frac{BC}{AH}=\frac{AB\cdot AC}{BC\cdot AH}=1\to BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^3.\)

a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy

Xét ΔABH vuông tại H(gt)
=> \(AH^2=AE\cdot AB\) (1)
Xét ΔAHC vuông tại C(gt)
=>\(AH^2=AF\cdot AC\) (2)
Từ (1)(2) suy ra:
AE.AB=AF.AC
b) Xét ΔABH vuông tại H(gt)
=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)
=>AB=25
Áp dụng hệ thức ta có:
\(AH^2=AE\cdot AB\)
=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)
Có: AB=AE+BE
=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)

Cho tam giác ABC vuông tại A Có đường cao AH. HE vuông góc AC, HF vuông góc AB
C/m CE/BF = AC3/AB3