Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)

đây là hình nhé, để cung cấp cho cách giải:

Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
B)
Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

a: xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)
nên \(\hat{BAC}=60^0\)
ΔACB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)
=>\(CB=R\sqrt3\)
c: Xét (O) có
MC,MB là các tiếp tuyến
Do đó: MC=MB
=>M nằm trên đường trung trực của CB(1)
ta có: OC=OB
=>O nằm trên đường trung trực của CB(2)
Từ (1),(2) suy ra MO là đường trung trực của CB
=>MO⊥CB
mà CA⊥CB
nên CA//OM
d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB
ΔACB vuông tại C
=>CA⊥CB tại C
=>CB⊥AK tại C
=>ΔKCB vuông tại C
Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)
\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)
mà \(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)
nên \(\hat{MCK}=\hat{MKC}\)
=>MC=MK
mà MC=MB
nên MB=MK(3)
ta có: KB⊥BA
CH⊥BA
DO đó: KB//CH
Xét ΔAMK có CI//MK
nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)
Xét ΔAMB có IH//MB
nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)
từ (3),(4),(5) suy ra CI=IH
=>I là trung điểm của CH
=>MA đi qua trung điểm I của CH

https://alfazi.edu.vn/question/5b8a626cb067113822bfbc62
vào đây để nhận phần quà hấp dẫn nha
và nói là Nick lâm mời nhé
cám ơn và hậu tạ
a, Tính được BC = 5cm, AH = 12 5 cm
b, Tìm được B ^ ≈ 53 , 13 0 , C ^ ≈ 36 , 87 0
c, Tính được
BE = 15 7 cm, CE = 20 7 cm và AE = 12 2 7 cm