Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hiện tai minh chi moi giai được cau a thoi. a, Áp dung định lý py-ta-go cho tam giác Vuông ABC: AB^2+AC^2=BC^2. 6^2+8^2=BC^2 36+64=100. vay can100=10cm
A B C H D
a/ Làm luôn cho hoàn chỉnh:
Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(100=BC^2\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b/ Xét tam giác ABC và tam giác AHB có:
\(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)
=> tam giác ABC ~ tam giác HBA (g.g)
c/ Từ chứng minh câu b
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)
* Tính \(BH\):
Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)
* Tính \(HC\):
\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)
d/ Xét tam giác ABD và tam giác ACD có:
\(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)
=> tam giác ABD ~ tam giác ACD (c.g.c)
Tới đây bí rồi, để nghĩ tiếp

:a) Xét tam giác ABC có BC2=AB2+AC2 ( Định lý Py-ta-go)
Thay số:BC2=6 2+8 2 BC2=36+64=100 =>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt) => tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

a, \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)
b, \(\Delta AEH\infty\Delta AHB\left(g.g\right)\Rightarrow\frac{AE}{AH}=\frac{AH}{AB}\Rightarrow AE.AB=AH^2\)
c, \(\Delta AFH\infty\Delta AHC\Rightarrow\frac{AF}{AH}=\frac{AH}{AC}\Rightarrow AH^2=AF.AC\)
d, \(AE.AB=AF.AC\left(=AH^2\right)\Rightarrow\frac{AB}{AF}=\frac{AC}{AE}\)
\(\Delta ABC\infty\Delta AFE\left(c.g.c\right)\)
e, \(AH^2=AE.AB\Rightarrow\left(4,8\right)^2=AE.6\Rightarrow AE=3,84\left(cm\right)\)
\(AH^2=AF.AC\Rightarrow\left(4,8\right)^2=AF.8\Rightarrow AF=2,88\left(cm\right)\)
Vậy \(S_{BCFE}=S_{ABC}-S_{AEF}=\frac{1}{2}AB.AC-\frac{1}{2}AE.AF=\frac{1}{2}.6.8-\frac{1}{2}.3,84.2,88=18,4704\left(cm^2\right)\)
Ta có: A H 2 = HB.HC (cmt)
=> 16 2 = 8.HC => HC = 32cm
=> BC = BH + HC = 8 + 32 = 40 cm
Nên diện tích tam giác ABC là S A B C = 1 2 .AH.BC = 1 2 .16.40 = 320cm2
Đáp án: A