Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ngày mai mình nộp bài rồi, mong các bạn chỉ bài giúp mình . mình không hiểu gì về 2 bài toán này cả TT_TT

A B C E D
a)Xét ΔBEC và ΔCDB có:
\(\widehat{BEC}=\widehat{CDB}=90^o\) (gt)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( vì ΔABC có AB=AC=> ΔABC cân tại A)
=> ΔBEC =ΔCDB( cạnh huyền- góc nhọn)
=> BD=CE
b)Vì ΔBEC=ΔCDB 9cmt)
=> BE=CD
Có : AB=AE+BE
AC=AD+DC
Mà AB=AC(gt) ; BE=CD(cmt)
=>AE=AD
Xét ΔAOE và ΔAOD có:
AE=AD(cmt)
\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)
OA: cạnh chung
=> ΔAOE=ΔAOD (cạnh huyenf - cạnh góc vuông)
=> OE=OD
c) Vì ΔBEC=ΔCDB (cmt)
=> \(\widehat{BCE}=\widehat{CBD}\)
=> ΔOBC cân tại O
=> OB=OC
d)Vì ΔAOE=ΔAOD(cmt)
=> \(\widehat{OAE}=\widehat{OAD}\)
=> AO là tia pg của goac BAC
Ta có hình vẽ sau:
1 2 B A C E D O 1 2
a) Xét ΔABD và ΔACE có:
\(\widehat{A}\) : Chung
AB = AC (gt)
\(\widehat{ADB}=\widehat{AEC}=90^o\) (gt)
=> ΔABD = ΔACE (g.c.g)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) Vì ΔABD = ΔACE (ý a)
=> AD = AE(2 cạnh tương ứng)
mà AB = AC (gt)
=> EB = ED
và \(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng)
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\) (gt)
EB = ED (cm trên)
\(\widehat{EBD}=\widehat{DCE}\) (cm trên)
=> ΔOEB = ΔODC (g.c.g)
=> OE = OD(2 cạnh tương ứng) (đpcm)
c) Vì ΔOEB = ΔODC (ý b)
=> OB = OC (2 cạnh tương ứng) (đpcm)
d) Vì ΔABD = ΔACE (ý a)
=> AD = AE(cạnh tương ứng)
Xét ΔAOE và ΔAOD có:
OE = OD (ý b)
\(\widehat{AEO}=\widehat{ADO}=90^o\) (gt)
AD = AE (cm trên)
=> ΔAOE = ΔAOD (c.g.c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
=> AO là tia phân giác của \(\widehat{BAC}\) (đpcm)

A B C D H 1 2
a) Xét Δ AHB và ΔDHB có:
BH: cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> Δ AHB = ΔDHB (c.g.c)
b) Vì: ΔAHB=ΔDHB(cmt)
=> AB=BD ; \(\widehat{B_1}=\widehat{B_2}\)
Xét ΔABC và ΔDBC có:
BC:cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) (cmt)
AB=BD
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà: \(\widehat{BAC}=90^o\)
=> \(\widehat{BDC}=90^o\)
hay \(BD\perp CD\)
c) Xét ΔABC vuông tại A (gt)
=> \(\widehat{B_1}+\widehat{ACB}=90^o\)
=> \(\widehat{ACB}=90^o-\widehat{B_1}=90-60=30^o\)
Vì: ΔABC = ΔDBC (cmt)
=> \(\widehat{ACB}=\widehat{DCB}\)
=>\(\widehat{ACD}=2\cdot\widehat{ACB}=2\cdot30=60\)
A B C H D a) Xét ΔAHB và ΔDHB có:
HB là cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=HD (gt)
=> ΔAHB=ΔDHB (c-g-c)
b) Theo câu a ta có: ΔAHB=ΔDHB
=> AB=DB; \(\widehat{ABH}=\widehat{DBH}\)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{ABC}=\widehat{DBC}\) (chứng minh trên)
AB=DB (chứng minh trên)
=> ΔABC=ΔDBC (c-g-c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà \(\widehat{BAC}=90^o\) => \(\widehat{BDC}=90^o\)
Vậy BD\(\perp\)DC
c) Vì ΔABC vuông tại A nên \(\widehat{ABC}+\widehat{BCA}=90^o\)
=> \(\widehat{BCA}\)= \(90^o-\widehat{ABC}\)=90o-60o=30o
Theo câu b ta có: ΔABC=ΔDBC
=> \(\widehat{ACB}=\widehat{DCB}=30^o\)
=> \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}=30^o+30^o=60^o\)
Vậy \(\widehat{ACD}=60^o\)

cái thể loại 0 điểm hỏi đáp , đăng toán hình mà éo vẽ hình không = rác rưởi