.  Cho tam giác ABC nhọn . Tìm điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

50 phút trước

Bài toán này yêu cầu tìm điểm \(M\) trên cạnh \(B C\) của tam giác \(A B C\) sao cho nếu vẽ các điểm \(D\) và \(E\) sao cho \(A B\) là đường trung trực của \(M D\) và \(A C\) là đường trung trực của \(M E\), thì độ dài đoạn \(D E\) là nhỏ nhất.

Phân tích bài toán:

Để giải bài toán này, ta cần tìm điểm \(M\) sao cho đoạn thẳng \(D E\) có độ dài nhỏ nhất. Để làm được điều này, ta cần hiểu rằng khi \(M\) được chọn sao cho \(A B\) và \(A C\) là các đường trung trực của \(M D\) và \(M E\), thì \(D\) và \(E\) là các điểm đối xứng của \(M\) qua các đường trung trực tương ứng.

Điều này gợi ý về tính chất đối xứng trong tam giác và liên quan đến điểm đối xứng của tam giác.

Hướng giải:

  1. Xác định các đối xứng:
    • \(A B\) là đường trung trực của \(M D\), nghĩa là \(D\) là ảnh của \(M\) qua đường thẳng \(A B\).
    • \(A C\) là đường trung trực của \(M E\), nghĩa là \(E\) là ảnh của \(M\) qua đường thẳng \(A C\).
  2. Điều kiện để đoạn \(D E\) có độ dài nhỏ nhất:
    Để \(D E\) có độ dài nhỏ nhất, điểm \(M\) cần phải được chọn sao cho điểm \(D\) và \(E\) có thể đối xứng nhau một cách tối ưu nhất qua các đường trung trực. Từ đó, ta có thể suy ra rằng điểm \(M\) phải là điểm đối xứng của điểm \(A\) qua cạnh \(B C\), tức là \(M\) phải là vị trí đối xứng của \(A\) qua đường thẳng \(B C\).
  3. Lý do:
    Khi \(M\) là điểm đối xứng của \(A\) qua \(B C\), thì các đường trung trực của \(M D\) và \(M E\) (tức là các đường vuông góc với \(A B\) và \(A C\)) sẽ tạo thành một hệ đối xứng đặc biệt, dẫn đến việc đoạn \(D E\) có độ dài nhỏ nhất.

Kết luận:

Điểm \(M\) trên cạnh \(B C\) sao cho đoạn \(D E\) có độ dài nhỏ nhất chính là điểm đối xứng của điểm \(A\) qua đường thẳng \(B C\).

50 phút trước

Tham khảo

18 tháng 3 2016

ban bit cach lam khong day to voi

26 tháng 2 2019

Khó quá đi !