Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)
Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)
(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)
b) Xét ΔAMN và ΔABC có:
\(\widehat{BAC}\)chung
\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)
Do đó ΔAMN ~ ΔABC
Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay AM.AC=AN.AB
Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)
Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)
Suy ra tứ giác ANHM nội tiếp
Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)
Mà \(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)
\(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)
Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)
Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)
c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)
Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)
Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)
Do đó tứ giác HMCD nội tiếp
Suy ra \(\widehat{HMD}=\widehat{HCD}\)
Mà \(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)
Nên \(\widehat{HMD}=\widehat{HMN}\)
Vậy MH là phân giác \(\widehat{NMD}\)
Mà MH vuông góc AM (gt)
Nên AM là phân giác ngoài
Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)
hay IH.AD=AH.ID
a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)
→AFAD=AHAB→AF.AB=AH.AD
Tương tự AH.AD=AE.AC→AF.AB=AE.AC
b.Ta có :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o
→AEHF,AEDB,FHDB nội tiếp
→ˆHFE=ˆFAE=ˆHBD=ˆHFD
→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF
→HIHD=FIFD=AIAD
→IH.AD=AI.DH

a)Nối F với D : E với D ta có:
Xét tam giác FBC ta có
D là trung điểm BC(1)
Góc BFC=90 (2)
Từ (1)(2)=>FD là trung tuyến của tam giác FBC
=>BD=CD=DF(*)
Chứng minh tương tự tam giác EBC
=>DE=DC=DB(**)
Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)
=>B;F;E;C thuộc đừng tròn
=>D là tâm của đường tròn
B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn
=>B;H;E;c ko thuộc đừng tròn
a: ΔOBC cân tại O
mà OM là đường trung tuyến
nên OM⊥BC tại M
M là trung điểm của BC
=>\(MB=MC=\frac{BC}{2}=\frac{R\sqrt3}{2}\)
Xét ΔOMB vuông tại M có \(cosOBM=\frac{BM}{OB}=\frac{R\sqrt3}{2}:R=\frac{\sqrt3}{2}\)
nên \(\hat{OBM}=30^0\)
ΔOBC cân tại O
=>\(\hat{BOC}=180^0-2\cdot\hat{OBC}=180^0-2\cdot30^0=120^0\)
b: N đối xứng O qua BC
=>BC là đường trung trực của ON
=>BC⊥ON tại trung điểm của ON
mà BC⊥OM
và ON và OM có điểm chung là O
nên O,M,N thẳng hàng
=>BC cắt ON tại M
=>M lả trung điểm của ON
ΔCOM vuông tại M
=>\(\hat{COM}+\hat{MCO}=90^0\)
=>\(\hat{COM}=90^0-30^0=60^0\)
Xét tứ giác BOCN có
M là trung điểm chung của CB và ON
=>BOCN là hình bình hành
Hình bình hành BOCN có OB=OC
nên BOCN là hình thoi
=>OC=CN
Xét ΔONC có OC=CN và \(\hat{NOC}=60^0\)
nên ΔONC đều
=>ON=OC
=>N cũng thuộc (O)
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD⊥CA
mà BH⊥CA
nên BH//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥BA
nên CH//BD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC
mà OM⊥BC
nên OM//AH
BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
Xét ΔHAD có
O,M lần lượt là trung điểm của DA,DH
=>OM là đường trung bình của ΔHAD
=>\(OM=\frac12AH\)
e:
Xét (O) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC
nên \(\hat{BAC}=\frac12\cdot\hat{BOC}=\frac12\cdot120^0=60^0\)
ABDC nội tiếp
=>\(\hat{BAC}+\hat{BDC}=180^0\)
=>\(\hat{BDC}=180^0-60^0=120^0\)
Ta có: BHCD là tứ giác nội tiếp
=>\(\hat{BHC}=\hat{BDC}\)
=>\(\hat{BHC}=120^0\)
Xét tứ giác BHOC có \(\hat{BHC}=\hat{BOC}\left(=120^0\right)\)
nên BHOC là tứ giác nội tiếp
=>B,H,O,C cùng thuộc một đường tròn