K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Ta có: \(AD\cdot AB=AE\cdot AC\)

nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

T
24 tháng 9

Em cần gấp quá nhờ thầy cô giải giúp em ạ


a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

T
24 tháng 9

Cảm ơn thầy Thịnh ạ

31 tháng 10 2021

AD,AE là j

31 tháng 10 2021

c: Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)

=>\(AE=\dfrac{AH^2}{AB}\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{AH^2}{AC}\)

XétΔABC vuông tại A có

\(tanC=\dfrac{AB}{AC}\)

\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)

=>\(AF=AE\cdot tanC\)