Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BK*BC=BD*BH

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\hat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\frac{AD}{AE}=\frac{AB}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC
mà HK⊥BC
và AH,HK có điểm chung là H
nên A,H,K thẳng hàng
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\hat{KBH}\) chung
Do đó: ΔBKH~ΔBDC
=>\(\frac{BK}{BD}=\frac{BH}{BC}\)
=>\(BH\cdot BD=BK\cdot BC\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\hat{KCH}\) chung
Do đó: ΔCKH~ΔCEB
=>\(\frac{CK}{CE}=\frac{CH}{CB}\)
=>\(CK\cdot CB=CH\cdot CE\)
\(BH\cdot BD+CH\cdot CE\)
\(=BK\cdot BC+CK\cdot BC=BC\left(BK+CK\right)=BC^2\)

a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.

Lời giải:
Xét tam giác $HEB$ và $HDC$ có:
$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)
$\widehat{HEB}=\widehat{HDC}=90^0$
$\Rightarrow \triangle HEB\sim \triangle HDC$ (g.g)
$\Rightarrow \frac{HE}{HB}=\frac{HD}{HC}\Rightarrow HE.HC=HB.HD$
Từ kết quả này kết hợp với định lý Pitago:
$BC^2=BE^2+EC^2=HB^2-EH^2+EC^2=HB^2-EH^2+(EH+HC)^2$
$=HB^2+HC^2+2EH.HC=HB^2+HC^2+EH.HC+HB.HD=HB(HB+HD)+HC(HC+EH)$
$=HB.BD+CH.EC$
(đpcm)