K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

S
22 tháng 8

a. gọi O là giao điểm của 2 đường chéo AC và BD

vì ABCD là HCN nên: OA = OB = OC = OD

⇒ 4 điểm A,B,C,D cùng thuộc một đường tròn

(tâm O bán kính \(OA=OB=OC=OD=\frac12AC=\frac12BD)\)

b. gọi M là trung điểm của cạnh BC

△ BEC vuông tại E ⇒ E thuộc đường tròn đường kính BC (1)

△ CDB vuông tại D ⇒ D thuộc đường tròn đường kính BC(2)

từ (1) (2) ⇒ 4 điểm B,E,D,C cùng thuộc 1 đường tròn

(tâm M; bán kính \(\frac{a}{2}\) )

22 tháng 8

vẽ hình cho tui đk

30 tháng 10 2021

Nhanh giùm mình với ạ

31 tháng 10 2021

a: Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

hay B,C,D,E cùng thuộc một đường tròn

12 tháng 11 2021

 

 1501516278_1491269794_4001.jpg 

a: Xét tứ giác AHCE có \(\hat{AHC}+\hat{AEC}=90^0+90^0=180^0\)

nên AHCE là tứ giác nội tiếp

=>A,H,C,E cùng thuộc một đường tròn

b: Sửa đề: Chứng minh BH=BD; DE là tiếp tuyến của đường tròn đường kính BC

Vì BC⊥AH tại H

nên BC là tiếp tuyến tại H của (A;AH)

Xét ΔAHB vuông tại H và ΔADB vuông tại D có

AB chung

AH=AD

Do đó: ΔAHB=ΔADB

=>BH=BD

Xét (O) có

BH,BD là các tiếp tuyến

Do đó: AB là phân giác của góc HAD

=>\(\hat{HAD}=2\cdot\hat{HAB}\)

Xét (O) có

CE,CH là các tiếp tuyến

Do đó: AC là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAC}\)

\(\hat{DAE}=\hat{DAH}+\hat{EAH}\)

\(=2\cdot\left(\hat{HAB}+\hat{HAC}\right)=2\cdot\hat{BAC}=90^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

Gọi M là trung điểm của BC

=>M là tâm đường tròn đường kính BC

ΔABC vuông tại A

=>A nằm trên đường tròn đường kính BC

=>A nằm trên (M)

Ta có: BD⊥DE

CE⊥DE

Do đó: BD//CE

Xét hình thang BDEC có

M,A lần lượt là trung điểm của BC,DE

=>AM là đường trung bình của hình thang BDEC

=>AM//CE//BD

=>AM⊥DE tại A

=>ED là tiếp tuyến tại A của (M)

c:

Gọi X là giao điểm của EH và BD

Xét (A) có

ΔDHE nội tiếp

DE là đường kính

Do đó: ΔDHE vuông tại H

=>DH⊥EH tại H

=>DH⊥XE tại H

=>ΔDHX vuông tại H

Ta có: \(\hat{BHD}+\hat{BHX}=\hat{XHD}=90^0\)

\(\hat{BDH}+\hat{BXH}=90^0\) (ΔDHX vuông tại H)

\(\hat{BHD}=\hat{BDH}\)

nên \(\hat{BHX}=\hat{BXH}\)

=>BH=BX

mà BH=BD

nên BX=BD(1)

Ta có: HK⊥DE

XD⊥ED

Do đó: HK//XD

Xét ΔEDB có KI//DB

nên \(\frac{KI}{DB}=\frac{EI}{EB}\) (2)

Xét ΔEBX có IH//BX

nên \(\frac{IH}{BX}=\frac{EI}{EB}\) (3)

Từ (1),(2),(3) suy ra KI=HI

=>I là trung điểm của HK

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

18 tháng 2 2021

cần câu d :v

29 tháng 10 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

b: Gọi O là trung điểm của AH

ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>ADHE nội tiếp (O)

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH vuông góc BC tại M

ΔABC cân tại A

mà AM là đường cao

nên M là trung điểm của BC

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Xét tứ giác BEHM có

\(\widehat{BEH}+\widehat{BMH}=180^0\)

=>BEHM là tứ giác nội tiếp

\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)

\(=\widehat{OHE}+\widehat{MBD}\)

\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)

=>EM là tiếp tuyến của (O)

28 tháng 11 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>CE\(\perp\)BE tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó;ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,D cùng nằm trên đường tròn đường kính AH

c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D

=>I là trung điểm của AH

Gọi giao điểm của AH với BC là M

AH\(\perp\)BC

nên AH\(\perp\)BC tại M

\(\widehat{BHM}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)

nên \(\widehat{BHM}=\widehat{IDH}\)

mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

OB=OD

=>ΔODB cân tại O

=>\(\widehat{OBD}=\widehat{ODB}\)

=>\(\widehat{ODH}=\widehat{DBC}\)

\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)

\(=\widehat{DBC}+\widehat{DCB}\)

\(=90^0\)

=>ID\(\perp\)DO

Sửa đề: B,D,C,E

BD\(\perp\)AC

=>\(\widehat{BDC}=\widehat{ADB}=90^0\)

CE\(\perp\)AB

=>\(\widehat{AEC}=\widehat{BEC}=90^0\)

Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc một đường tròn