
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC

a. gọi O là giao điểm của 2 đường chéo AC và BD
vì ABCD là HCN nên: OA = OB = OC = OD
⇒ 4 điểm A,B,C,D cùng thuộc một đường tròn
(tâm O bán kính \(OA=OB=OC=OD=\frac12AC=\frac12BD)\)
b. gọi M là trung điểm của cạnh BC
△ BEC vuông tại E ⇒ E thuộc đường tròn đường kính BC (1)
△ CDB vuông tại D ⇒ D thuộc đường tròn đường kính BC(2)
từ (1) (2) ⇒ 4 điểm B,E,D,C cùng thuộc 1 đường tròn
(tâm M; bán kính \(\frac{a}{2}\) )

a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc một đường tròn

a: Xét tứ giác AHCE có \(\hat{AHC}+\hat{AEC}=90^0+90^0=180^0\)
nên AHCE là tứ giác nội tiếp
=>A,H,C,E cùng thuộc một đường tròn
b: Sửa đề: Chứng minh BH=BD; DE là tiếp tuyến của đường tròn đường kính BC
Vì BC⊥AH tại H
nên BC là tiếp tuyến tại H của (A;AH)
Xét ΔAHB vuông tại H và ΔADB vuông tại D có
AB chung
AH=AD
Do đó: ΔAHB=ΔADB
=>BH=BD
Xét (O) có
BH,BD là các tiếp tuyến
Do đó: AB là phân giác của góc HAD
=>\(\hat{HAD}=2\cdot\hat{HAB}\)
Xét (O) có
CE,CH là các tiếp tuyến
Do đó: AC là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAC}\)
\(\hat{DAE}=\hat{DAH}+\hat{EAH}\)
\(=2\cdot\left(\hat{HAB}+\hat{HAC}\right)=2\cdot\hat{BAC}=90^0\)
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
Gọi M là trung điểm của BC
=>M là tâm đường tròn đường kính BC
ΔABC vuông tại A
=>A nằm trên đường tròn đường kính BC
=>A nằm trên (M)
Ta có: BD⊥DE
CE⊥DE
Do đó: BD//CE
Xét hình thang BDEC có
M,A lần lượt là trung điểm của BC,DE
=>AM là đường trung bình của hình thang BDEC
=>AM//CE//BD
=>AM⊥DE tại A
=>ED là tiếp tuyến tại A của (M)
c:
Gọi X là giao điểm của EH và BD
Xét (A) có
ΔDHE nội tiếp
DE là đường kính
Do đó: ΔDHE vuông tại H
=>DH⊥EH tại H
=>DH⊥XE tại H
=>ΔDHX vuông tại H
Ta có: \(\hat{BHD}+\hat{BHX}=\hat{XHD}=90^0\)
\(\hat{BDH}+\hat{BXH}=90^0\) (ΔDHX vuông tại H)
mà \(\hat{BHD}=\hat{BDH}\)
nên \(\hat{BHX}=\hat{BXH}\)
=>BH=BX
mà BH=BD
nên BX=BD(1)
Ta có: HK⊥DE
XD⊥ED
Do đó: HK//XD
Xét ΔEDB có KI//DB
nên \(\frac{KI}{DB}=\frac{EI}{EB}\) (2)
Xét ΔEBX có IH//BX
nên \(\frac{IH}{BX}=\frac{EI}{EB}\) (3)
Từ (1),(2),(3) suy ra KI=HI
=>I là trung điểm của HK

a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
b: Gọi O là trung điểm của AH
ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Xét tứ giác BEHM có
\(\widehat{BEH}+\widehat{BMH}=180^0\)
=>BEHM là tứ giác nội tiếp
\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)
\(=\widehat{OHE}+\widehat{MBD}\)
\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)
=>EM là tiếp tuyến của (O)

a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>CE\(\perp\)BE tại E
=>CE\(\perp\)AB tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó;ΔBDC vuông tại D
=>BD\(\perp\)DC tại D
=>BD\(\perp\)AC tại D
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,D cùng nằm trên đường tròn đường kính AH
c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D
=>I là trung điểm của AH
Gọi giao điểm của AH với BC là M
AH\(\perp\)BC
nên AH\(\perp\)BC tại M
\(\widehat{BHM}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)
nên \(\widehat{BHM}=\widehat{IDH}\)
mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)
nên \(\widehat{IDH}=\widehat{BCD}\)
OB=OD
=>ΔODB cân tại O
=>\(\widehat{OBD}=\widehat{ODB}\)
=>\(\widehat{ODH}=\widehat{DBC}\)
\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)
\(=\widehat{DBC}+\widehat{DCB}\)
\(=90^0\)
=>ID\(\perp\)DO

Sửa đề: B,D,C,E
BD\(\perp\)AC
=>\(\widehat{BDC}=\widehat{ADB}=90^0\)
CE\(\perp\)AB
=>\(\widehat{AEC}=\widehat{BEC}=90^0\)
Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc một đường tròn