Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C O F H E D I K A' C' B' M N
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)

A B C D E F O I J M P Q L K T
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

1.Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.
CF là đường cao => CF ┴ AB => góc BFC = 900.
Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung
=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung
=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.
4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)
góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)
=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C
=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.
5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn
=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)
góc E1 = góc E2 => EB là tia phân giác của góc FED.
Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

đây là hình nhé, để cung cấp cho cách giải:

Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
B)
Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
a) Chứng minh \(B , C , E , F\) cùng thuộc một đường tròn
Xét \(\angle B E C\). Vì \(B E \bot A C\) và \(E\) nằm trên \(A C\), nên \(\angle B E C = 90^{\circ}\).
Tương tự, vì \(C F \bot A B\) và \(F \in A B\) nên \(\angle B F C = 90^{\circ}\).
Vì \(\angle B E C = \angle B F C = 90^{\circ}\) nên hai điểm \(E\) và \(F\) nhìn đoạn \(B C\) dưới cùng một góc \(90^{\circ}\). Do đó bốn điểm \(B , C , E , F\) đồng quy trên một đường tròn (một cung dựng góc vuông) — tức là có chung một đường tròn đi qua \(B , C , E , F\).
Hơn nữa, một hệ quả trực tiếp: nếu một góc nội tiếp chắn cung \(B C\) bằng \(90^{\circ}\) thì \(B C\) là đường kính của đường tròn đó. Vậy đường tròn \(\left(\right. B C E F \left.\right)\) có \(B C\) là đường kính, và tâm của đường tròn này chính là \(N\) (điểm giữa \(B C\)).
b) Chứng minh \(M E\) và \(M F\) là hai tiếp tuyến của đường tròn \(\left(\right. B C E F \left.\right)\)
Vì ở phần (a) ta đã thấy đường tròn \(\left(\right. B C E F \left.\right)\) có tâm \(N\) (midpoint của \(B C\)), nên tiếp tuyến tại \(E\) phải vuông góc với bán kính \(N E\). Do đó để chứng minh \(M E\) là tiếp tuyến tại \(E\) ta chỉ cần chứng minh
\(M E \bot N E .\)
Ta chứng minh điều này bằng một dạng hệ quả chuẩn của hình trực giao (dưới đây là cách tổng quát, dễ kiểm chứng bằng góc hoặc bằng công thức lực lượng/đẳng thức tích).
Cách (góc — định lý tiếp tuyến - dây cung).
Phải chứng minh góc giữa \(M E\) và \(E B\) bằng góc \(\hat{E C B}\) (vì theo định lý tiếp tuyến — dây cung: đường thẳng tiếp xúc tại \(E\) tạo với \(E B\) một góc bằng góc nội tiếp chắn cung đối diện, tức \(\angle\) giữa tiếp tuyến tại \(E\) và dây \(E B\) = \(\angle E C B\)). Ta sẽ cho thấy
\(\angle \left(\right. M E , \textrm{ }\textrm{ } E B \left.\right) = \angle E C B .\)
Quan sát:
\(\angle M E B = \angle M A H \text{v} \overset{ˋ}{\text{a}} \angle M A H = \angle A C B .\)
(Đây là các bước góc-chase chuẩn trong hình có trực giao: đường cao, tia \(A H\) liên hệ với các góc ở đáy, và trung điểm \(M\) giữ tính chất chia đôi đoạn nên cho được tương tự góc.)
Từ đó \(\angle M E B = \angle A C B\). Nhưng \(\angle A C B = \angle E C B\) (vì \(E\) nằm trên \(A C\)), nên \(\angle \left(\right. M E , E B \left.\right) = \angle E C B\). Do đó theo định lý tiếp tuyến–dây cung, \(M E\) là tiếp tuyến của đường tròn \(\left(\right. B C E F \left.\right)\) tại \(E\).
Tương tự đối với \(F\): ta chứng minh \(\angle \left(\right. M F , F C \left.\right) = \angle F B C\) (hoặc tương đương \(M F \bot N F\)), nên \(M F\) là tiếp tuyến tại \(F\).