Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB

Sửa đề: Qua M, kẻ đường thẳng song song với AD cắt AB,AC lần lượt tại K và E
a: Xét ΔOAD và ΔOMK có
\(\hat{OAD}=\hat{OMK}\) (hai góc so le trong, AD//MK)
\(\hat{AOD}=\hat{MOK}\) (hai góc đối đỉnh)
Do đó ΔOAD~ΔOMK
=>\(\frac{OA}{OM}=\frac{OD}{OK}\)
=>\(OA\cdot OK=OD\cdot OM\)
b: Xét ΔABC có AD là phân giác
nên \(\frac{DB}{AB}=\frac{DC}{AC}\)
=>\(\frac{DB}{5}=\frac{DC}{10}\)
=>\(\frac{DB}{1}=\frac{DC}{2}\)
mà DB+DC=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{DB}{1}=\frac{DC}{2}=\frac{DB+DC}{1+2}=\frac{12}{3}=4\)
=>\(DB=4\cdot1=4\)
c: Ta có: AD//MK
=>\(\hat{BAD}=\hat{AKE}\) (hai góc đồng vị) và \(\hat{DAC}=\hat{AEK}\) (hai góc so le trong)
mà \(\hat{BAD}=\hat{DAC}\) (AD là phân giác của góc BAC)
nên \(\hat{AKE}=\hat{AEK}\)
=>AE=AK
Xét ΔADC có EM//AD
nên \(\frac{AE}{EC}=\frac{DM}{MC}\)
=>\(\frac{AE+EC}{EC}=\frac{DM+MC}{MC}\)
=>\(\frac{AC}{CE}=\frac{DC}{MC}\)
=>\(\frac{AC}{DC}=\frac{CE}{MC}\)
mà \(\frac{AC}{DC}=\frac{AB}{DB}\)
nên \(\frac{AB}{DB}=\frac{CE}{MC}\)
=>\(\frac{AB}{CE}=\frac{DB}{MC}\)
d: Xét ΔBKM có AD//MK
nên \(\frac{BD}{BM}=\frac{BA}{BK}\)
=>\(\frac{BA}{BK}=\frac{BD}{MC}\)
=>\(\frac{BA}{BK}=\frac{BA}{CE}\)
=>BK=CE

Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )