K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2023

Do DE song song BC 

=> Theo định lý Talet, DA/DB = EA/EC

Mà DA/DB= EC/EA

=> EC=EA

=> E là trung điểm AC

=> DE là đường trung bình của tam giác ABC

=> D cũng là trung điểm AB

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3

Sửa đề: Qua M, kẻ đường thẳng song song với AD cắt AB,AC lần lượt tại K và E

a: Xét ΔOAD và ΔOMK có

\(\hat{OAD}=\hat{OMK}\) (hai góc so le trong, AD//MK)

\(\hat{AOD}=\hat{MOK}\) (hai góc đối đỉnh)

Do đó ΔOAD~ΔOMK

=>\(\frac{OA}{OM}=\frac{OD}{OK}\)

=>\(OA\cdot OK=OD\cdot OM\)

b: Xét ΔABC có AD là phân giác

nên \(\frac{DB}{AB}=\frac{DC}{AC}\)

=>\(\frac{DB}{5}=\frac{DC}{10}\)

=>\(\frac{DB}{1}=\frac{DC}{2}\)

mà DB+DC=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{DB}{1}=\frac{DC}{2}=\frac{DB+DC}{1+2}=\frac{12}{3}=4\)

=>\(DB=4\cdot1=4\)

c: Ta có: AD//MK

=>\(\hat{BAD}=\hat{AKE}\) (hai góc đồng vị) và \(\hat{DAC}=\hat{AEK}\) (hai góc so le trong)

\(\hat{BAD}=\hat{DAC}\) (AD là phân giác của góc BAC)

nên \(\hat{AKE}=\hat{AEK}\)

=>AE=AK

Xét ΔADC có EM//AD
nên \(\frac{AE}{EC}=\frac{DM}{MC}\)

=>\(\frac{AE+EC}{EC}=\frac{DM+MC}{MC}\)

=>\(\frac{AC}{CE}=\frac{DC}{MC}\)

=>\(\frac{AC}{DC}=\frac{CE}{MC}\)

\(\frac{AC}{DC}=\frac{AB}{DB}\)

nên \(\frac{AB}{DB}=\frac{CE}{MC}\)

=>\(\frac{AB}{CE}=\frac{DB}{MC}\)

d: Xét ΔBKM có AD//MK

nên \(\frac{BD}{BM}=\frac{BA}{BK}\)

=>\(\frac{BA}{BK}=\frac{BD}{MC}\)

=>\(\frac{BA}{BK}=\frac{BA}{CE}\)

=>BK=CE

5 tháng 4 2019

WHATTTTTT     THE           HEOOOOOOOOOOOOOOOOOOO     !!!!!!!!!!!!??

7 tháng 3 2020

NỘI QUY CHUYÊN MỤC:2-KHÔNG ĐƯA RA CÂU TRẢ LỜI LINH TINH

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )