Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết

P/s bạn kia làm cái gì mà mình không hiểu
a) có AB = 15cm ( bài cho)
Xét tam giác AHC có góc AHC = 90 độ( AH vuông góc với BC)
theo định lý py-ta-go có
AB^2= AH^2+BH^2
=> BH^2 = AB^2 - AH^2
=> BH^2= 15^2- 12^2= 81
=> BH= 9
có BH+ HC=BC => BC= 9+16= 25
Vậy ta có AB= 15cm; BC= 25cm
câu sau tương tự bạn đó ( câu đầu làm mình không thấy tính AB với BC đâu hết )
a)Ta có: \(AC^2=AH^2+HC^2\)(định lý pytago)
\(\Rightarrow AC^2=12^2+16^2=144+256=400\)
\(\Rightarrow AC=20cm\)
b)Ta có:\(\widehat{HAC}\)\(+\)\(\widehat{AHC}\)\(+\)\(\widehat{ACH}\)\(=180^o\)(tổng 3 góc trong 1 tam giác)
\(\Rightarrow\widehat{ACH}\)\(=180^o\)\(-\widehat{HAC}\)\(-\widehat{AHC}\)\(=180^o\)\(-37^o-90^o=53^o\)
ta có:\(\widehat{ABC}\)\(=\widehat{HAC}\)\(+\widehat{ACH}\)(tính chất góc ngoài của tam giác)
Hay:\(\widehat{ABC}\)\(=37^o+53^o=90^o\)

a: Xét ΔBAD và ΔBED có
BA=BE
\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: ΔBAD=ΔBED
=>\(\hat{BAD}=\hat{BED}\)
=>\(\hat{BED}=90^0\)
=>DE⊥BC
mà AH⊥BC
nên DE//AH
c: Xét ΔMHA và ΔMDK có
MH=MD
\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)
HA=DK
Do đó: ΔMHA=ΔMDK
=>\(\hat{HMA}=\hat{DMK}\)
mà \(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)
nên \(\hat{AMD}+\hat{DMK}=180^0\)
=>A,M,K thẳng hàng
Chúng ta sẽ giải từng câu hỏi trong bài toán này.
Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED
- Điều kiện:
- ∆ABC vuông tại A (AB < AC).
- Tia phân giác của góc B cắt AC tại D.
- Trên cạnh BC lấy điểm E sao cho BE = BA.
- Vẽ AH BC tại H.
- Chứng minh:
- Xét các tam giác ∆ABD và ∆EBD:
Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
\(\Delta A B D = \Delta E B D\) - Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
- AB = BE (do đề bài cho BE = BA).
- Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
- Kết luận AD = ED:
- Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
- Vậy, AD = ED.
Câu b) Chứng minh AH // DE
- Xét đoạn AH và DE:
- Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
- Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
- Chứng minh AH // DE:
- Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
- Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.
Câu c) Chứng minh A, M, K thẳng hàng
- Định nghĩa các điểm:
- Trên tia DE, lấy điểm K sao cho DK = AH.
- M là trung điểm của DH, tức là:
\(\text{DM} = \text{MH}\)
- Chứng minh A, M, K thẳng hàng:
- Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
- M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
- Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.
Kết luận:
- a) ∆ABD = ∆EBD và AD = ED.
- b) AH // DE.
- c) A, M, K thẳng hàng.

\(\Delta\)ABC cân,ACB=100 độ=>CAB=CBA=40 độ
trên AB lấy AE=AD.cần chứng minh AE+DC=AB (hoặc EB=DC)
\(\Delta\)AED cân,DAE=40 độ:2=20 độ
=>ADE=AED=80 độ=40 độ+EDB (góc ngoài của \(\Delta\)EDB)
=>EDB=40 độ =>EB=ED (1)
trên AB lấy C' sao cho AC'=AC
\(\Delta\)CAD=\(\Delta\)C'AD (c.g.c)
=>AC,D=100 độ và DC,E=80 độ
vậy \(\Delta\)DC'E cân =>DC=ED (2)
từ (1) và (2) có EB=DC'
mà DC'=DC.vậy AD+DC=AB
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm