Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ IG⊥AB tại G, kẻ IK⊥AC tại K
Xét ΔCKI vuông tại K và ΔCDI vuông tại D có
CI chung
\(\hat{KCI}=\hat{DCI}\)
Do đó: ΔCKI=ΔCDI
=>CK=CD và IK=ID
Xét ΔBGI vuông tại G và ΔBDI vuông tại D có
BI chung
\(\hat{GBI}=\hat{DBI}\)
Do đó: ΔBGI=ΔBDI
=>BG=BD
Xét ΔAKI vuông tại K và ΔAGI vuông tại G có
AI chung
\(\hat{KAI}=\hat{GAI}\)
Do đó: ΔAKI=ΔAGI
=>AK=AG
\(\frac{a+b-c}{2}=\frac{BC+AC-AB}{2}\)
\(=\frac{BD+CD+CK+KA-AG-GB}{2}=\frac{BD-BG+CD+CK+KA-AG}{2}\)
\(=\frac{CD+CK}{2}=\frac{2\cdot CD}{2}=CD\)

Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.

a, do tam giác ABC vuông tại A và có đường tròn tâm O đường kính AB => AC vuông góc với AO hay AC là tia tiếp tuyến của (O)
nối AD, Xét tứ giác ACDH có: góc ADC = 90o ( kề bù với góc ADB nội tiếp chắn nửa đường tròn (o) )
góc AHC = 90o ( do H là hình chiếu của A trên OC )
=> hai đỉnh H và D nằm kề nhau và cùng nhìn đoạn AC dưới hai góc bằng nhau (= 90o) => tứ giác ACDH là tứ giác nội tiếp (đpcm)
=> góc CAD = góc CHD ( hai góc nt cùng chắn cung CD )
mà góc CAD = góc ABC ( do ACD là góc tạo bởi tia tiếp tuyến AC và cùng chắn dây cung AD với góc nột tiếp ABC )
=> góc CHD = góc ABC ( đpcm)
b, Áp dụng hệ tức lượng cho tam giác ACO vuông tại A và đường cao AH, ta có: AO2= HO . OC
mà AO = OB (= bán kính) => OB2= HO. OC hay \(\frac{OH}{OB}=\frac{OB}{OC}\)
Xét tam giác OHB và OBC có:
góc HOB là góc chung
\(\frac{OH}{OB}=\frac{OB}{OC}\)
=> hai tam giác trên đồng dạng (c.g.c) (đpcm)