Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét △ABC và △HBA có:
∠AHB=∠BAC (=90o), ∠ABC chung
⇒△ABC∼△HBA (g.g)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC
b, Xét △EDC và △BAC có:
∠BAC=∠EDC (=90o) , ∠BCA chung
⇒ △EDC∼△BAC (g.g)
⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)
Xét △ADC và △BEC có:
\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)
∠BCA chung
⇒ △ADC∼△BEC (c.g.c)
⇒ ∠ADC=∠BEC
c, từ b, △ADC∼△BEC
⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)
Xét △AHC và △BAC có:
∠AHC=∠BAC (=90o) , ∠BCA chung
⇒ △AHC∼△BAC (g.g)
⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: AC=căn 15^2-9^2=12cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>ΔADE cân tại A
mà AI là trung tuyến
nên AI vuông góc ED
=>AI vuông góc BD
=>BI*BD=BA^2=BH*BC
=>BI/BC=BH/BD
=>ΔBIH đồng dạng với ΔBCD
=>góc BIH=góc C

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng

a) -Xét △AIC và △DIB có:
\(\widehat{IAC}=\widehat{IDB}=90^0\)
\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)
\(\Rightarrow\)△AIC∼△DIB (g-g).
\(\Rightarrow\dfrac{AI}{DI}=\dfrac{CI}{BI}\) nên \(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)
b) -Xét △AID và △CIB có:
\(\widehat{AID}=\widehat{CIB}\) (đối đỉnh)
\(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)(cmt)
\(\Rightarrow\)△AID∼△CIB (c-g-c) nên \(\widehat{ABC}=\widehat{ADC}\)
c) -Có: \(\widehat{IAD}=\widehat{ICB}\) (△AID∼△CIB)
\(\widehat{ICA}=\widehat{IBD}\)(△AIC∼△DIB)
Mà \(\widehat{ICB}=\widehat{ICA}\) (CI là tia phân giác của \(\widehat{ACB}\))
\(\Rightarrow\widehat{IAD}=\widehat{IBD}\)
\(\Rightarrow\)△ADB cân tại D nên \(DA=DB\)

Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC