Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\hat{ABC}+\hat{ACB}+\hat{BAC}=180^0\)
=>\(\hat{ABC}+\hat{ACB}=180^0-\hat{BAC}\)
=>\(2\left(\hat{IBC}+\hat{ICB}\right)=180^0-\hat{BAC}\)
=>\(\hat{IBC}+\hat{ICB}=90^0-\frac12\cdot\hat{BAC}\)
Xét ΔBIC có \(\hat{BIC}+\hat{IBC}+\hat{ICB}=180^0\)
=>\(\hat{BIC}=180^0-\left(90^0-\frac12\cdot\hat{BAC}\right)=90^0+\frac12\cdot\hat{BAC}\)
Vì BI và BK lần lượt là phân giác trong và ngoài tại đỉnh B của ΔABC nên BI⊥BK
Vì CI và CK lần lượt là phân giác trong và ngoài tại đỉnh C của ΔABC
nên CI⊥CK
Xét tứ giác BICK có \(\hat{BIC}+\hat{BKC}+\hat{IBK}+\hat{ICK}=360^0\)
=>\(\hat{BIC}+\hat{BKC}=360^0-90^0-90^0=180^0\)
=>\(\hat{BKC}=180^0-90^0-\frac12\cdot\hat{BAC}=90^0-\frac12\cdot\hat{BAC}\)
b: ΔDBK vuông tại B
=>\(\hat{BKD}+\hat{BDK}=90^0\)
=>\(90^0-\frac12\cdot\hat{BAC}+\hat{BDK}=90^0\)
=>\(\hat{BDC}=\frac12\cdot\hat{BAC}\)

A B C D 1 2
Do \(\widehat{B}=\widehat{C};\widehat{A_1}=\widehat{A_2}\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ABD=ACD\left(g.c.g\right)\Rightarrow AB=AC\)

a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).
Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).
AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).
Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).
Đáp số: Số đo góc AMC = 110 độ.
b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).
Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).
Đáp số: Số đo góc ABE = 40 độ.
A B C M D E

B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )

a/ BAx là góc ngoài tam giác ABC =>BAx = B+C=>BAE=(B+c)/2.
ABE= A+C => AEB=180-ABE-BAE=180-A-C-B/2-C/2=(B-C)/2
b.Có B+C=120
B-C=30 => đề sai nhé góc B>C =>B=75, C=45
Ta có : xAB = 180° - BAC ( kề bù )
=> EAB = \(\frac{180°\:-\:BAc}{2}\)
=> ABE = 180° - ABC ( kề bù)
=> AEB = \(180°\:-\:\frac{180°-Bac}{2}\)- 180° - ABC
=> ABC = B - C/2
b) Sai nhé

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a: Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Xét ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\Rightarrow\begin{cases}\hat{A}=60^0\\ \hat{B}=100^0\\ \hat{C}=20^0\end{cases}\)
b: AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)
Xét ΔADB có \(\hat{ADB}+\hat{DAB}+\hat{DBA}=180^0\)
=>\(\hat{ADB}=180^0-30^0-100^0=50^0\)