Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tam giác HAB và tam giác ABC có:
Góc AHB= góc BAC (= 900 )
B> là góc chung
⇒ tam giác HAB ~ tam giác ABC (g.g)
b) Xét ΔΔ ABC vuông tại A: BC2 = AB2 + AC2
Hay BC2 = 122 + 162
BC2 = 144 + 256 = 400
=> BC = √400 = 20 (cm)
Ta có : Δ HAB ∼ Δ ABC
=> \(\frac{HA}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HA}{12}=\frac{12}{20}\)
=> AH = \(\frac{12.12}{20}=7,2\) cm
c)
Ta có
DE là tia phân giác của góc ADB trong tam giác DAB,
áp dụng t/c tia phân giác thì\(\frac{DA}{DB}=\frac{AE}{EB}\)
DG là tia phân giác cảu góc CDA trong tam giác CDA.
áp dụng t/c tia phân giác thì \(\frac{CD}{DA}=\frac{CF}{FA}\)
VẬy \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{DA}{DB}.\frac{DB}{DC}.\frac{CD}{DA}=1\)(dpcm)

xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = \sqrt{400}400= 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}ACAH=BCABhay16AH=2012
=> AH = \frac{12.16}{20}=9,62012.16=9,6( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = \sqrt{51,84}51,84 = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}BDAB=CDAC⇔BC