Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vẽ đường thẳng song song với AC và vuông góc với AB tài D và N ( góc NDA = 90 độ)
Xét tam giác NAD và tam giác NAH có :
góc DAN = góc NAH ( vì DN là tia p/g góc BAH)
AN cạnh chung
=> tam giác NAD = tam giác NAH ( ch-gn)
=> góc DNA = góc ANH ( hai góc tương ứng ) (1)
Mặt khác : góc DNA = góc NAC ( hai góc so le trong )
Kết hợp (1) => góc DNA = góc ANH = góc NAC => tam giác NCA cân tại C => NC =AC (3)
Xét tam giác NCI và tam giác ACI có:
NC =AC ( do (3))
CI cạnh chung
góc NCI = góc ICA ( CI là p/g góc BCA)
=> tam giác NCI = tam giác ACI ( c.g.c)
=> góc NIC = góc AIC ( hai góc tương ứng )
Mà góc NIC và góc AIC là cặp góc kề bù
=> góc NIC = góc AIC = 90 độ
**** bạn

đề bài có lỗi ko bạn ?
a, Vì tam giác ABC cân tại A
AH là đường cao nên đồng thời là đường phân giác
=> ^BAH = ^CAH
b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến
=> HB = HC = BC/2 = 4 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)
c, Xét tam giác AEH và tam giác ADH ta có :
^EAH = ^DAH (cmt)
AH_chung
^AEH = ^ADH = 900
Vậy tam giác AEH = tam giác ADH ( ch - gn )
=> AE = AD ( 2 cạnh tương ứng )
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC
=> ED // BC
mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3

Vẽ đường thẳng song song với AC và vuông góc với AB tài D và N ( góc NDA = 90 độ)
Xét tam giác NAD và tam giác NAH có :
góc DAN = góc NAH ( vì DN là tia p/g góc BAH)
AN cạnh chung
=> tam giác NAD = tam giác NAH ( ch-gn)
=> góc DNA = góc ANH ( hai góc tương ứng ) (1)
Mặt khác : góc DNA = góc NAC ( hai góc so le trong )
Kết hợp (1) => góc DNA = góc ANH = góc NAC => tam giác NCA cân tại C => NC =AC (3)
Xét tam giác NCI và tam giác ACI có:
NC =AC ( do (3))
CI cạnh chung
góc NCI = góc ICA ( CI là p/g góc BCA)
=> tam giác NCI = tam giác ACI ( c.g.c)
=> góc NIC = góc AIC ( hai góc tương ứng )
Mà góc NIC và góc AIC là cặp góc kề bù
=> góc NIC = góc AIC = 90 độ

Ta có hình vẽ:
I B H C A 1 2 1 2
Vì AI là phân giác của BAH nên \(BAI=HAI=\frac{BAH}{2}\)
CI là phân giác của BCA nên \(BCI=ACI=\frac{BCA}{2}\)
Δ ABC vuông tại A có: ABC + BCA = 90o
=> BCA = 90o - ABC
=> \(\frac{BCA}{2}=45^o-\frac{ABC}{2}=ACI\)
Δ ABH vuông tại H có: ABH + BAH = 90o
=> BAH = 90o - ABH
=> \(\frac{BAH}{2}=45^o-\frac{ABH}{2}=BAI\)
Lại có: IAC = BAC - BAI
=> IAC = 90o - (45o - \(\frac{ABH}{2}\))
=> IAC = 45o + \(\frac{ABH}{2}\)
Xét Δ AIC có: AIC + IAC + ICA = 180o (tổng 3 góc của Δ)
=> AIC + 45o + \(\frac{ABH}{2}\) + 45o - \(\frac{ABC}{2}\) = 180o
=> AIC + 90o = 180o
=> AIC = 180o - 90o = 90o (đpcm)