Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔACB vuông tại C có
\(\sin\widehat{CBA}=\dfrac{CA}{AB}=\dfrac{1}{2}\)
=>CA=R
hay \(CB=R\sqrt{3}\)
b: Xét ΔMAB vuông tại A có AC là đường cao
nên \(BC\cdot MC=AC^2\left(1\right)\)
Xét ΔACB vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot BC=AH\cdot AB\)

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\hat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(\frac{CD}{CA}=\frac{CE}{CB}\)
=>\(\frac{CD}{CE}=\frac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\frac{CD}{CE}=\frac{CA}{CB}\)
góc DCA chung
Do đó: ΔCDA~ΔCEB
b:
Xét ΔHAD vuông tại H có HA=HD
nên ΔHAD vuông cân tại H
=>\(\hat{HAD}=\hat{HDA}=45^0\)
ΔCDA~ΔCEB
=>\(\hat{CDA}=\hat{CEB}\)
mà \(\hat{CDA}+\hat{ADH}=180^0;\hat{CEB}+\hat{AEB}=180^0\)
nên \(\hat{ADH}=\hat{AEB}\)
=>\(\hat{AEB}=45^0\)
Xét ΔABE vuông tại A có \(\hat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
c: Xét ΔCAH có ED//AH
nên \(\frac{ED}{AH}=\frac{CE}{CA}\)
\(\frac{ED}{AH}+\frac{AB}{AC}=\frac{CE}{AC}+\frac{AB}{AC}=\frac{CE}{AC}+\frac{AE}{AC}=\frac{AC}{AC}=1\)
Trong tam giác vuông ABC\(\) vuông tại \(\)A
Đường cao \(\) AH chia \(\) BC thành \(\)BH và \(\) HC sao cho
AB^2 = BH . BC , AC^2 = HC . BC\(\)
Ta có điểm \(D\) sao cho HD = HA\(\)
Điểm \(E\) trên \(\) AC vuông góc với DC\(\)
Từ hình học, \(E D \parallel A B\) (do \(D E \bot B C\) và tam giác vuông ABC) ⇒ tỉ số các đoạn
ED/AH = HC - HA/HC = 1 - HA/HC\(\)
Trong tam giác vuông
HA =AB . AC/BC , HC = AC - HA\(\)
Thay vào
ED/AH = 1 - HA/AC = 1 - AB/AC\(\)
ta có
ED/AH = 1- AB/AC
ED/AH + AB/AC = 1 - AB/AC + AB/AC =1\(\)
vậy ta chứng minh được
ED/AH + AB/AC = 1\(\)

A B C E F M O K N H
a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).
b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)
AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK
Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)
(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM
Lại có: ^ACN=^AHE (Cùng phụ ^HAC)
Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE
=> ^ACN=^AFE. Hay ^ACN=^AFM
Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)
=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)
=> ^AMF=^ANC => 1800 - ^AMF=1800 - ^ANC => ^FMH=^CNK
Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)
=> ^AKC=^AHF hay ^NKC=^MHF.
Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)
=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)
Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).