Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H
Ta có \(AH^2=BH.CH\Rightarrow\frac{BH}{AH}=\frac{AH}{CH}\)
Từ đó ta có \(\Delta BHA\sim\Delta AHC\left(c-g-c\right)\Rightarrow\widehat{BAH}=\widehat{ACH}\)
Vậy thì \(\widehat{BAC}=\widehat{BAH}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^o\)
Suy ra tam giác ABC vuông tại A.

a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

a/ Ta có: + AB2 + AC2 = 62 + 82 = 100
+ BC2 = 102 = 100
=> AB2 + AC2 = BC2 = 100
=> tam giác ABC vuông tại A theo định lí pytago
b/ 4 ý này trong sách hình học 9 có CM nha bạn
c/ AH.BC = AB.AC
=> AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\)cm
AB2= BC.BH
=> BH= \(\frac{AB^2}{BC}\)= \(\frac{6^2}{10}\)
= 3,6 cm
AC2 = BC.CH
=> CH= \(\frac{AC^2}{BC}=\frac{8^2}{10}=6,4cm\)
Hướng dẫn thôi, bài làm mà trình bày thế này gọi là sơ sài.
c/m 2 tam giác vuông AHB và CHA đồng dạng (g.g) :
ABH^ = CAH^ (cùng phụ BAH^)
rõ chưa ^^!??
=> BAH^ = ACH^
Mà ACH^ +CAH^ = 90o (phụ nhau)
=> BAH^ + CAH^ =90o hay BAC^ = 90o <=> tam giác ABC vuông tại A
ở đâu ra cái hệ thức đó ??
* Gợi ý: chứng minh 2 tam giác đồng dạng