Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\left\{{}\begin{matrix}AE=EC\\DE=EF\\\widehat{AED}=\widehat{CEF}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\\ b,\Delta ADE=\Delta CFE\\ \Rightarrow AD=CF\\ \text{Mà }AD=DB\Rightarrow BD=CF\\ c,\Delta ADE=\Delta CFE\Rightarrow\widehat{ADE}=\widehat{CFE}\\ \text{Mà 2 góc này ở vị trí slt }\Rightarrow AB\text{//}CF\)
c: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF
hay AB//CF

a)
Xét \(\Delta AED\)và \(\Delta CEF\)
+ AE = CE(gt)
+ DE = EF(gt)
+ \(\widehat{AED}=\widehat{CEF}\)(đổi đỉnh)
\(\Delta AED=\Delta CEF\left(c.g.c\right)\)
b) Ta có CF = AD ( hai cạnh tương ứng)
Mà AD = BD => BD = CF
Ta lại có : \(\widehat{EAD}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên FC//AB
c) \(\Delta BDC=\Delta FCD\)(c.g.c)
+ Chung CD
+ \(\widehat{BDC}=\widehat{FCD}\)(so le trong)
+ BD = CF(cmt)
d) Từ c) ta có DE = BC
Mà DE = 2.EF=BC
=> EF=1/2 BC

hình tự vẽ nha
a) Xét tam giác AED và tam giác CEF có:
AE=EC (GT)
góc AED=góc CEF (đối đỉnh)
ED=EF (GT)
suy ra AD=CF
mà AD=BD (GT)
suy ra CF=BD
Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)
suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)
mà DE=1/2DF (GT)
suy ra BC=DF
Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)
suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB
b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)
Có DE=1/2BC (CMT) hay BC=2.DE