K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

A B C D E M N 18 cm

D và E là trung điểm của AB và AC => DE là đường trung bình của tam giác ABC

=> DE//BC và DE=1/2 BC = 9cm

Tứ giác DECB có DE // BC => Hình thang DECB đáy DE, CB

Lại có M, N là trung điểm BD và CE=> MN là đường trung bình của hình thang DECB

=> MN = 1/2 ( DE + BC) = 1/2 (9+18) = 13,5 (cm)

Vậy....................................

________________________JK~ Liên Quân Group ________________________

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔABC

=>MD//AC và \(MD=\frac{AC}{2}=\frac82=4\left(\operatorname{cm}\right)\)

b: Xét tứ giác ADMN có

AD//MN

DM//AN

Do đó: ADMN là hình bình hành

Hình bình hành ADMN có \(\hat{DAN}=90^0\)

nên ADMN là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AMCE có

N là trung điểm chung của AC và ME

=>AMCE là hình bình hành

Hình bình hành AMCE có AC⊥ME

nên AMCE là hình thoi


13 tháng 9

ABC vuông tại A

=>\(A B^{2} + A C^{2} = B C^{2}\)

=>\(A C^{2} = 1 0^{2} - 6^{2} = 64 = 8^{2}\)

=>AC=8(cm)

Xét ΔABC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔABC

=>MD//AC và \(M D = \frac{A C}{2} = \frac{8}{2} = 4 \left(\right. cm ⁡ \left.\right)\)

b: Xét tứ giác ADMN có

AD//MN

DM//AN

Do đó: ADMN là hình bình hành

Hình bình hành ADMN có \(\hat{D A N} = 9 0^{0}\)

nên ADMN là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AMCE có

N là trung điểm chung của AC và ME

=>AMCE là hình bình hành

Hình bình hành AMCE có AC⊥ME

nên AMCE là hình thoi.

CHÚC BẠN HỌC TỐT!!! ^^

21 tháng 12 2016

Hình học lớp 8

a) Tứ giác AEDF có: góc BAC=90\(^o\)

góc DFA=90\(^o\)

góc DEF=90\(^o\)

=> Tứ giác AEDF là hình chữ nhật

b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)

=> Δ ABD cân tại D

mà DE là đường cao( do AB là đường trung trực của DM)

=> DE là đường trung tuyến

=> EA=1/2AB=> EA=3 (cm)

CM tương tự đối với Δ ADC

từ đó suy ra: FA=1/2AC=> FA=4 (cm)

\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)

c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)

E là trung điểm của đường chéo DM

=> ADBM là hình bình hành

mà MD vuông góc với AB

=> ADBM là hình thoi

d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi

Ta có: MA=AD( 2 cạnh của hình thoi)

NA = AD( 2 cạnh của hình thoi)

=> MA=NA

mà MA=BD

=> NA=BD

Ta có: NA//DC( cạnh đối của hình thoi)

=> NA//BD( vì BD và DC trùng nhau)

tứ giác BAND có: NA=BD

NA//BD

=> BADN là hình bình hành

=> AB=DN

Để ADCN là hình vương

<=> DN=AC

<=> AB=AC( AB=DN)

<=> Δ ABC cân tại A

mà Δ ABC vuông

=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A

 

 

 

 

HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ

 

 

 

21 tháng 12 2016

mk ra bài này rồi đợi mk tý nhé

22 tháng 3 2021

tui chịuleuleu