
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A B C D E M N 18 cm
D và E là trung điểm của AB và AC => DE là đường trung bình của tam giác ABC
=> DE//BC và DE=1/2 BC = 9cm
Tứ giác DECB có DE // BC => Hình thang DECB đáy DE, CB
Lại có M, N là trung điểm BD và CE=> MN là đường trung bình của hình thang DECB
=> MN = 1/2 ( DE + BC) = 1/2 (9+18) = 13,5 (cm)
Vậy....................................
________________________JK~ Liên Quân Group ________________________

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔABC
=>MD//AC và \(MD=\frac{AC}{2}=\frac82=4\left(\operatorname{cm}\right)\)
b: Xét tứ giác ADMN có
AD//MN
DM//AN
Do đó: ADMN là hình bình hành
Hình bình hành ADMN có \(\hat{DAN}=90^0\)
nên ADMN là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AMCE có
N là trung điểm chung của AC và ME
=>AMCE là hình bình hành
Hình bình hành AMCE có AC⊥ME
nên AMCE là hình thoi
ABC vuông tại A
=>\(A B^{2} + A C^{2} = B C^{2}\)
=>\(A C^{2} = 1 0^{2} - 6^{2} = 64 = 8^{2}\)
=>AC=8(cm)
Xét ΔABC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔABC
=>MD//AC và \(M D = \frac{A C}{2} = \frac{8}{2} = 4 \left(\right. cm \left.\right)\)
b: Xét tứ giác ADMN có
AD//MN
DM//AN
Do đó: ADMN là hình bình hành
Hình bình hành ADMN có \(\hat{D A N} = 9 0^{0}\)
nên ADMN là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AMCE có
N là trung điểm chung của AC và ME
=>AMCE là hình bình hành
Hình bình hành AMCE có AC⊥ME
nên AMCE là hình thoi.
CHÚC BẠN HỌC TỐT!!! ^^

a) Tứ giác AEDF có: góc BAC=90\(^o\)
góc DFA=90\(^o\)
góc DEF=90\(^o\)
=> Tứ giác AEDF là hình chữ nhật
b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)
=> Δ ABD cân tại D
mà DE là đường cao( do AB là đường trung trực của DM)
=> DE là đường trung tuyến
=> EA=1/2AB=> EA=3 (cm)
CM tương tự đối với Δ ADC
từ đó suy ra: FA=1/2AC=> FA=4 (cm)
\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)
c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)
E là trung điểm của đường chéo DM
=> ADBM là hình bình hành
mà MD vuông góc với AB
=> ADBM là hình thoi
d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi
Ta có: MA=AD( 2 cạnh của hình thoi)
NA = AD( 2 cạnh của hình thoi)
=> MA=NA
mà MA=BD
=> NA=BD
Ta có: NA//DC( cạnh đối của hình thoi)
=> NA//BD( vì BD và DC trùng nhau)
tứ giác BAND có: NA=BD
NA//BD
=> BADN là hình bình hành
=> AB=DN
Để ADCN là hình vương
<=> DN=AC
<=> AB=AC( AB=DN)
<=> Δ ABC cân tại A
mà Δ ABC vuông
=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A
HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ