Cho tam giác ABC có AC>AB. Gọi M là trung điểm của BC. So sánh:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC

nên \(\widehat{ACB}< \widehat{ABC}\)

b: Trên tia đối của tia MA, lấy D sao cho MA=MD

Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>AC=BD 

Ta có: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

=>\(\widehat{MAC}=\widehat{ADB}\)(1)

Ta có: AC=BD

AC>AB

Do đó: BD>AB

Xét ΔBAD có BD>BA

mà góc BAD,góc BDA lần lượt là góc đối diện của các cạnh BD,BA

nên \(\widehat{BAD}>\widehat{ADB}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{MAB}>\widehat{MAC}\)

 

5 tháng 9

a)1/4 - 5/6 + 7/12

= -7/12 + 7/12

= 0


S
5 tháng 9

\(a.\frac14-\frac56+\frac{7}{12}\)

\(=\frac{3}{12}-\frac{10}{12}+\frac{7}{12}\)

\(=\frac{0}{12}=0\)

\(b.6\frac27\cdot\frac15-1\frac27\cdot\frac15+\frac45\)

\(=\frac{44}{7}\cdot\frac15-\frac97\cdot\frac15+\frac45\)

\(=\frac15\cdot\left(\frac{44}{7}-\frac97\right)+\frac45\)

\(=\frac15\cdot\frac{35}{7}+\frac45\)

\(=\frac15\cdot5+\frac45\)

\(=1+\frac45=\frac95\)

a: (x-2)(x+3)>0

TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)

TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)

=>x<-3

b: (2x-1)(-x+1)>0

=>(2x-1)(x-1)<0

TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)

=>\(\frac12

TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)

=>x∈∅

c: (x+1)(3x-6)<0

=>3(x+1)(x-2)<0

=>(x+1)(x-2)<0

TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1

TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)

=>x∈∅

MT
22 tháng 8
L Nguyễn Lê Phước Thịnh dùng chat


17 tháng 8

a) Tính số đo các góc BOD, DOE, COE

Dựa vào các số đo đã cho:

  • ∠BOC = 42°
  • ∠AOD = 97°
  • ∠AOE = 56°

Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A

Tính từng góc:

  • ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
  • ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
    → Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41°
  • ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°


  • b) Tia OD có phải là phân giác của góc COE không?
  • Phân giác là tia chia góc thành hai phần bằng nhau.
  • ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
  • 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE