Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\hat{AMB}=\hat{AMC}\)
mà \(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)
nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)
=>AM⊥BC
ΔAMB=ΔAMC
=>\(\hat{MAB}=\hat{MAC}\)
=>AM là phân giác của góc BAC
b: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MB=MC
\(\hat{MBA}=\hat{MCD}\) (hai góc so le trong, AB//CD)
Do đó: ΔAMB=ΔDMC
=>MA=MD
=>M là trung điểm của AD
c: Xét ΔMBD vuông tại M và ΔMCA vuông tại M có
MB=MC
MD=MA
Do đó: ΔMBD=ΔMCA
=>\(\hat{MBD}=\hat{MCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
Ta có: BH⊥AC
AC//BD
Do đó: BH⊥BD
=>\(\hat{HBD}=90^0\)

a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
A B C M N
ta có AB = AC
=> \(\Delta ABC\)cân tại A
Mà BM= MC
=> AM vuông góc vs BC
b) ta có AB // CN
=> AC // BN
=> ABNC là hình bình hành
Mà BC vuông góc vs AN
=> ABNC là hình thoi
=> AC = CN
=>ACN là tam giác cân
Mà CM vuông vs AN
=> AM = MN
=> M là trung điểm của AN ( đpcm )