Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn tự vẽ hình nhé
vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)
a) xét ΔABD và ΔAMD, có:
AM=AB (gt)
\(\widehat{BAD}=\widehat{MAD}\) (cmt)
AD chung
⇒ ΔABD = ΔAMD (c.g.c) (đpcm)
b) Từ ΔABD = ΔAMD (cmt)
⇒ BD=DM( 2 cạnh t/ứng) (đpcm)
\(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)
c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.
vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)
vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ \(\widehat{BDN}\) =\(\widehat{MDC}\)
Xét Δ BDN và ΔMDC, có:
\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)
BD=DM (cmt)
\(\widehat{DBN}=\widehat{DMC}\) (cmt)
⇒Δ BDN = ΔMDC (g.c.g) (đpcm)
d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC
mà AB=AM ⇒ AB+BN =AM+MC
⇔AN=AC.⇒ Δ ANC cân tại A.
và AB=AM(gt) ⇒ ΔABM cân tại A
mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)
Vì Δ ANC cân tại A (cmt)
AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.
Mà AD⊥ BM⇒ BM//CN(đpcm)

A B C M D
a) Xét ΔABD và ΔMCD có:
AD=MD(gt)
\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)
BD=CD(gt)
=> ΔABD=ΔMCD(c.g.c)
b) Đính chính lại đề: CM AB vuông góc vs CM
VÌ: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=>AB//CM
c)Xét ΔBDM và ΔCDA có:
DB=DC(gt)
\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)
DM=AD(gt)
=>ΔBDM=ΔCDA(c.g.c)
=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong
=>AC//BM
đọc nhầm đề lm lại từ phần b
b) Vì: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong
=> AB//CM
Mà: \(AB\perp AC\left(gt\right)\)
=> \(AC\perp CM\)
phần c vẫn như ở dưới

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)

a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM và \(\widehat{ABD}=\widehat{AMD}\)
c: Ta có: \(\widehat{ABD}+\widehat{NBD}=180^0\)(hai góc kề bù)
\(\widehat{AMD}+\widehat{CMD}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AMD}\)
nên \(\widehat{NBD}=\widehat{CMD}\)
Xét ΔDBN và ΔDMC có
\(\widehat{DBN}=\widehat{DMC}\)
DB=DM
\(\widehat{BDN}=\widehat{MDC}\)
Do đó: ΔDBN=ΔDMC
d: Ta có: ΔABD=ΔAMD
=>BD=MD
=>D nằm trên đường trung trực của BM(1)
ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM
Ta có: ΔDBN=ΔDMC
=>BN=MC
Xét ΔABC có \(\dfrac{AB}{BN}=\dfrac{AM}{MC}\)
nên BM//NC