Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
B D A H C E
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Theo yêu cầu vẽ hình của bạn Hyouka :)
2.
: B A C H D TH: ^B > ^C B A C H D TH: ^B < ^C

mik vẽ hình rồi nha.
bn nhìn hình mà làm
dài phết đấy
bn xét trường hợp nữa nha
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.
Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC
.

Kết quả:
\(\angle C E D = \frac{\mid A - B \mid}{2} .\)Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc
\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\) và \(A B\) (chính là \(\angle C E D\)) bằng
\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra
\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)
Vì CD và CE là hai tia phân giác của hai góc kề bù
nên CD⊥CE
=>ΔDCE vuông tại C
Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D
nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)
\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)
Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)
=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)