Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(\hat{ABM}+\hat{ABD}=180^0\) (hai góc kề bù)
\(\hat{ACN}+\hat{ACE}=180^0\) (hai góc kề bù)
mà \(\hat{ABD}=\hat{ACE}\left(=90^0-\hat{BAC}\right)\)
nên \(\hat{ABM}=\hat{NCA}\)
b:
Xét ΔABM và ΔNCA có
AB=NC
\(\hat{ABM}=\hat{NCA}\)
BM=CA
Do đó: ΔABM=ΔNCA
c: ΔABM=ΔNCA
=>AM=NA và \(\hat{BAM}=\hat{CNA};\hat{AMB}=\hat{NAC}\)
\(\hat{MAB}+\hat{BAN}=\hat{CNA}+\hat{BAN}=\hat{ANE}+\hat{EAN}=90^0\)
=>\(\hat{MAN}=90^0\)
=>ΔAMN vuông cân tại A

1Tại sao lại B=2D,mà chưa hề có điểm B trong đề
2aDo tam giác ABC cân đỉnh A=>góc ABC=góc ACB
=>góc ABM=góc ACN(góc ABM+góc ABC=góc ACN+GÓC ACB)
2bTa có:góc ABM=góc ACN(CMT).
Xét tam giác ABM và tam giác ACN.Bạn tự chứng minh có bằng nhau(c.g.c)
=>AM=AN=>AMN là tam giác cân
3aDo tam giác ABC cân=>góc ABC=góc ACB
Xét hai tam giác vuông HBD và KCE(Cạnh huyền-Góc nhọn).Bạn tự chứng minh.=>HB=CK
3bDo tam giác ABC cân=>góc ABC=góc ACB=>góc ABH=góc ACK
Bạn tự chứng minh hai tam giác AHB và AKC bằng nhau(c.g.c).Nhớ phải sử dung HB=CK
3cTôi không hiểu đề
~`!@#$%^&*()_-+=|\{[}]''":;>.<,?/
tớ chịu đầu hàng ?!
*_* ! soryyy

a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng

a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: ta có: \(\hat{A B M} + \hat{A B D} = 18 0^{0}\) (hai góc kề bù)
\(\hat{A C N} + \hat{A C E} = 18 0^{0}\) (hai góc kề bù)
mà \(\hat{A B D} = \hat{A C E} \left(\right. = 9 0^{0} - \hat{B A C} \left.\right)\)
nên \(\hat{A B M} = \hat{N C A}\)
b:
Xét ΔABM và ΔNCA có
AB=NC
\(\hat{A B M} = \hat{N C A}\)
BM=CA
Do đó: ΔABM=ΔNCA
c: ΔABM=ΔNCA
=>AM=NA và \(\hat{B A M} = \hat{C N A} ; \hat{A M B} = \hat{N A C}\)
\(\hat{M A B} + \hat{B A N} = \hat{C N A} + \hat{B A N} = \hat{A N E} + \hat{E A N} = 9 0^{0}\)
=>\(\hat{M A N} = 9 0^{0}\)
=>ΔAMN vuông cân tại A