Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E O H K
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
mk ko bít vẽ hình nên đừng hỏi cái hình ở đâu???
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
tik nha bn các câu còn lại từ từ

a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)

a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)

Cho tam giác ABC có góc B bằng góc C, tia phân giác BD và CE của góc B và góc C cắt nhau tại O. Kẻ OH vuông góc với OK; OK vuông góc với AB. Chứng minh:
a. Tam giác BCD = tam giác CBE
b. C/m: OB=OC
c.C/m: OH=OK
Theo dõi Báo cáo Lớp 7Toán 0


a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
Đúng 1Bình luận (0)Cập nhật


\(ĐÚNG\)
Đúng 1Cập nhật

mình kết bạn với nhau được không?
Đúng 0Bình luận (1)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
Đọc tiếpĐúng 2Bình luận (0)
Cho tam giác ABC có góc B và góc C. Tia phân giác BD của CE của góc B và góc C cắt nhau tại O. Từ O kẻ OH vuông góc với AC, OK vuông góc với AB. Chứng minh:
a) Tam giác ABC bằng tam CBE.
b) OB = OC.
c) OH = OK
Theo dõi Báo cáo Lớp 7ToánHình học lớp 700


Cho tam giác ABC cân . Tia phân giác BD và CE của góc B và góc C cắt nhau tại O . Từ O kẻ OH vuông góc với AC , ok vuông góc với AB chứng minh
a, tam giác BCD = tam giác CBE
b, OB=OC
c, OH=OK
(VẼ HÌNH GIÙM MÌNH LUN NHA)
Theo dõi Báo cáo Lớp 7Toán20


ABCDEOHK
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
Đọc tiếpĐúng 1Bình luận (0)
mk ko bít vẽ hình nên đừng hỏi cái hình ở đâu???
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
tik nha bn các câu còn lại từ từ
Đọc tiếpĐúng 1Bình luận (0)
Cho tam giác ABC có AB=AC, gọi AM là tia phân giác của góc BAC. Tia phân giác BD và CE của góc B và góc C cắt nhau tại O.
1, Chứng minh rằng M là trung điểm của BC
2, Chứng minh tam giác BCD= tam giác CEB
3, Chứng minh OB=OC
4, Từ O kẻ OH vuông góc với AC...

a: ΔABC cân tại A
=>góc BCD=góc CBE
b: XétΔOBC có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
c: Xét ΔOMB vuông tại M và ΔOKB vuông tạiK có
BO chung
góc MBO=góc KBO
=>ΔOMB=ΔOKB
=>OH=OK
Xét ΔCMO vuông tại M và ΔCHO vuông tại H có
CO chung
góc MCO=góc HCO
=>ΔCMO=ΔCHO
=>OM=OH=OK

B C A H K O E D
a) Xét t.g. BCD và t.g. CBE, có:
^B1=^C1 (gt)
BC chung => t.g BCD= t.g. CBE
^EBC=^DCB (gt) (g.c.g)
=> CD = BE ( 2 cạnh tương ứng)
=> BD = CE ( 2 cạnh tương ứng)
=> ^ODC= ^OEB ( 2 góc tương ứng)
b) Xét t.g. OBE và t.g. OCD, có:
^B2 = ^C2 (gt)
CD= BE (cmt) => t.g. OBE= t.g. OCD
^ ODC= ^OEB (cmt) (g.c.g)
=> OB=OC ( 2 cạnh tương ứng)
c) Ta có: OB+OD= BD; OC+OE= CE
Mà OB=OC (theo phần b); BD=CE (theo phần a)
=> OD=OE
*Xét t.g. OKE, có: ^KEO+ ^EOK= 900
*Xét t.g. OHD, có: ^ODH+ ^DOH= 900
Do ^ ODH = ^KEO => ^EOK = ^DOH
* Xét t.g. OKE và t.g. OHD, có:
^EKO = ^DHO = 900
OE= OD (cmt) => t.g. OKE= t.g. OHD
^EOK = ^DOH (cmt) (cạnh huyền- góc nhọn)
=> OK=OH ( 2 cạnh tương ứng)

a/ Vì \(\widehat{B}=\widehat{C}\)(gt)
mà BD, CE là tia p.g của \(\widehat{B},\widehat{C}\)
\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét tam giác BCD và tam giác CBE ta có:
\(\hept{\begin{cases}\widehat{B}=\widehat{C}\\BC:canh\\\widehat{DBC}=\widehat{ECB}\left(gt\right)\end{cases}}chung\)
suy ra tam giác BCD bằng tam giác CBE ( c.g.c )
Nhớ k cho mình nhé! Thank you!!!
b/ Vì \(\widehat{OBC}=\widehat{OCB}\left(cmt\right)\)
suy ra tam giác OBC cân tại O
suy ra OB = OC
Nhớ k cho mình nhé! Thank you!!!
a. Có tgiac ABC cân A-> ^ABC=^ACB
mà BD là pgiac^ABC-> ^ABD=^DBC (T/c tia pgiac)
CE là pgiac^ACB-> ^ACE=^ECB
=>^ABD=^DBC=^ACE=^ECB
Xét tgiac BCD= tgiac CBE:
^ ABC^ACB
BC chung
^ DBC=^ ECB
=> Tgiac BCD=Tgiac CBE ( gcg)
b. -> ^ DBC=^ ECB ( ctư )
Có O thuộc DB và EC-> ^ OBC=^OCB-> Tgiac OBC cân tại O(dhnb) -> OB=OC( t/c tgiac cân)
c. Có OH vuông góc AB tại H -> ^ OHB= 90°
OK vuông góc AC tại K -> ^ OKC=90°
Xét tgiac OHB và tgiac OKC
OHB = OHC ( =90°)
OB = OC
^ ABD = ^ ACE
-> tgiac OHB = tgiac OKC ( ch-gn)
-> OH = OK ( ctư)