Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tam giác MNP có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP} (=60^0)\)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Xét \(\Delta ABC\) và \(\Delta MNP\) có:
\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)
Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)
Xét \(\Delta DEF\) và \(\Delta GHK\) có:
\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)
Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.
Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau
b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ = 50^\circ \)
Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ = 30^\circ \)
Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

Bài 4:
Ta có: \(\hat{M_2}=\hat{N_2}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên a//b
Bài 3:
a//b
a⊥BA
Do đó: b⊥BA
=>\(\hat{ABC}=90^0\)
AD//BC
=>\(\hat{ADC}+\hat{DCB}=180^0\)
=>\(\hat{ADC}=180^0-110^0=70^0\)
Bài 2:
a: \(-\frac35+\frac{-2}{5}:x=\frac13\)
=>\(-\frac25:x=\frac13+\frac35=\frac{5}{15}+\frac{9}{15}=\frac{14}{15}\)
=>\(x=-\frac25:\frac{14}{15}=-\frac25\cdot\frac{15}{14}=-\frac37\)
b: \(0,2+\left|x-1,3\right|=1,5\)
=>|x-1,3|=1,5-0,2=1,3
=>\(\left[\begin{array}{l}x-1,3=1,3\\ x-1,3=-1,3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2,6\\ x=0\end{array}\right.\)
c: \(\left(\frac37-2x\right)^2=\frac49\)
=>\(\left[\begin{array}{l}\frac37-2x=\frac23\\ \frac37-2x=-\frac23\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=\frac37-\frac23=\frac{9}{21}-\frac{14}{21}=-\frac{5}{21}\\ 2x=\frac37+\frac23=\frac{9}{21}+\frac{14}{21}=\frac{23}{21}\end{array}\right.\)
=>\(\left[\begin{array}{l}x=-\frac{5}{21}:2=-\frac{5}{42}\\ x=\frac{23}{21}:2=\frac{23}{42}\end{array}\right.\)
d: \(2^{x}+2^{x+3}=144\)
=>\(2^{x}+2^{x}\cdot2^3=144\)
=>\(2^{x}\left(1+2^3\right)=144\)
=>\(2^{x}\cdot9=144\)
=>\(2^{x}=\frac{144}{9}=16=2^4\)
=>x=4
Bài 1:
a: \(\frac{14}{57}+\frac{29}{23}-\frac{71}{57}+\frac{-6}{23}\)
\(=\left(\frac{14}{57}-\frac{71}{57}\right)+\left(\frac{29}{23}-\frac{6}{23}\right)\)
\(=\frac{-57}{57}+\frac{23}{23}=-1+1=0\)
b: \(\frac{5}{12}\cdot\left(-\frac34\right)+\frac{7}{12}\left(-\frac34\right)\)
\(=-\frac34\left(\frac{5}{12}+\frac{7}{12}\right)=-\frac34\cdot\frac{12}{12}=-\frac34\)
d: \(\left(-\frac{3}{11}:\frac{5}{22}\right)\cdot\left(-\frac{15}{3}:\frac{26}{3}\right)\)
\(=-\frac{3}{11}\cdot\frac{22}{5}\cdot\left(_{}-5\right)\cdot\frac{3}{26}=-\frac35\cdot\left(-5\right)\cdot2\cdot\frac{3}{26}=3\cdot2\cdot\frac{3}{26}=\frac{9}{13}\)
f: \(\frac{9^{15}\cdot8^{11}}{3^{29}\cdot16^8}=\frac{3^{30}}{3^{29}}\cdot\frac{2^{33}}{2^{32}}=3\cdot2=6\)
Ta có: tam giác ABC cân tại A
Nên \(\widehat B = \widehat C = {60^o}\)( 2 góc đáy của tam giác cân )
Theo định lí về tổng 3 góc trong tam giác ta có : \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat A = {180^o} - {60^o} - {60^o} = {60^o}\)
Vì \(\widehat A = \widehat B = \widehat C = {60^o}\)\( \Rightarrow \) tam giác ABC là tam giác đều