Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\hat{DAB}\) chung
Do đó: ΔADB=ΔAEC
b: ΔADB=ΔAEC
=>DB=EC và AD=AE
Ta có: AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EB=DC
Do đó: ΔEBC=ΔDCB
=>\(\hat{ECB}=\hat{DBC}\)
=>\(\hat{HBC}=\hat{HCB}\)
=>ΔHBC cân tại H
c: ta có: HB=HC
HC>HD(ΔHDC vuông tại D)
DO đó: HB>HD
d: Xét ΔHNB và ΔHMC có
HN=HM
\(\hat{NHB}=\hat{MHC}\) (hai góc đối đỉnh)
HB=HC
Do đó: ΔHNB=ΔHMC
=>NB=MC
Gọi K là giao điểm của BN và CM
Ta có: BM=BH+HM
CN=CH+HN
mà BH=CH và HM=HN
nên BM=CN
Xét ΔBNM và ΔCMN có
BN=CM
BM=CN
MN chung
Do đó: ΔBNM=ΔCMN
=>\(\hat{BNM}=\hat{CMN}\)
=>\(\hat{KMN}=\hat{KNM}\)
=>KM=KN
ta có; KB+BN=KN
KC+CM=KM
mà BN=CM và KN=KM
nên KB=KC
=>K nằm trên đường trung trực của BC(1)
ta có: HB=HC
=>H nằm trên đường trung trực của BC(2)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,K thẳng hàng
=>AH,BN,CM đồng quy tại K

1)
A B H D c m n
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
Tam giác ABC cân tại A nên B D = D C = B C 2 = 24 2 = 12 ( c m )
Theo định lý Py-ta-go, ta có A D 2 = A C 2 - D C 2 = 20 2 - 12 2 = 16 2
Nên AD = 16cm
Xét ΔCDH và ΔADB có:
C D H ^ = A D B ^ = 90 ∘
C 1 = A 1 (cùng phụ với B)
Do đó ΔCDH ~ ΔADB (g.g)
Nên H D B D = H C A B = C D A D , tức là H D 12 = H C 20 = 12 16 = 3 4
Suy ra HD = 9cm.
Đáp án: C