K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Tam giác ABC cân tại A  nên B D = D C = B C 2 = 24 2 = 12 ( c m )

Theo định lý Py-ta-go, ta có A D 2 = A C 2 - D C 2 = 20 2 - 12 2 = 16 2

Nên AD = 16cm

Xét ΔCDH và ΔADB có:

C D H ^ = A D B ^ = 90 ∘

C 1 = A 1 (cùng phụ với B)

Do đó ΔCDH ~ ΔADB (g.g)

Nên H D B D = H C A B = C D A D , tức là  H D 12 = H C 20 = 12 16 = 3 4

Suy ra HD = 9cm.

Đáp án: C

22 giờ trước (16:19)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\hat{DAB}\) chung

Do đó: ΔADB=ΔAEC

b: ΔADB=ΔAEC

=>DB=EC và AD=AE

Ta có: AE+EB=AB

AD+DC=AC
mà AE=AD và AB=AC

nên EB=DC

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

=>\(\hat{ECB}=\hat{DBC}\)

=>\(\hat{HBC}=\hat{HCB}\)

=>ΔHBC cân tại H

c: ta có: HB=HC

HC>HD(ΔHDC vuông tại D)

DO đó: HB>HD

d: Xét ΔHNB và ΔHMC có

HN=HM

\(\hat{NHB}=\hat{MHC}\) (hai góc đối đỉnh)

HB=HC

Do đó: ΔHNB=ΔHMC

=>NB=MC

Gọi K là giao điểm của BN và CM

Ta có: BM=BH+HM

CN=CH+HN

mà BH=CH và HM=HN

nên BM=CN

Xét ΔBNM và ΔCMN có

BN=CM

BM=CN

MN chung

Do đó: ΔBNM=ΔCMN

=>\(\hat{BNM}=\hat{CMN}\)

=>\(\hat{KMN}=\hat{KNM}\)

=>KM=KN

ta có; KB+BN=KN

KC+CM=KM

mà BN=CM và KN=KM

nên KB=KC

=>K nằm trên đường trung trực của BC(1)

ta có: HB=HC

=>H nằm trên đường trung trực của BC(2)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,K thẳng hàng

=>AH,BN,CM đồng quy tại K

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).