Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: O nằm trên đường trung trực của AB
=>OA=OB(1)
O nằm trên đường trung trực của AC
=>OA=OC(2)
từ (1),(2) suy ra OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\hat{ABO}=\hat{ACO}\)
Xét ΔOBD và ΔOCE có
OB=OC
\(\hat{OBD}=\hat{OCE}\overline{}\)
BD=CE
Do đó: ΔOBD=ΔOCE
b: ΔOBD=ΔOCE
=>OD=OE
=>O nằm trên đường trung trực của DE(3)
ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
=>A nằm trên đường trung trực của DE(4)
Từ (3),(4) suy ra AO là đường trung trực của DE
c: Xét ΔABC có \(\frac{AD}{DB}=\frac{AE}{EC}\)
nên DE//BC
a)
\(O\) cách đều \(B\) và \(C\) ⇒ \(O B = O C\)
Giả thiết: \(B D = C E\)
Góc \(\angle D B O = \angle E C O\) do tam giác \(A B C\) cân, \(A O\) là trục đối xứng.
⇒ \(\triangle D O B = \triangle E O C\) (c.g.c).
b)
Từ (a) suy ra \(O D = O E\) ⇒ \(A O\) qua trung điểm \(D E\)
\(A O\) vuông góc \(D E\) (vì là trục đối xứng)
\(A O\) là đường trung trực của \(D E\).
c)
\(A O \bot B C\) và \(A O \bot D E\)
Hai đường cùng vuông góc với \(A O\) ⇒ DE\\BC
nhé bạn cảm ơn bí ẩn đã nhắc nhở\(\)
a: Xét ΔAKB và ΔAKC có
AK chung
\(\hat{KAB}=\hat{KAC}\)
AB=AC
Do đó: ΔAKB=ΔAKC
=>KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: O nằm trên đường trung trực của AB
=>OA=OB(2)
ta có: O nằm trên đường trung trực của AC
=>OA=OC(3)
Từ (2),(3) suy ra OB=OC
=>O nằm trên đường trung trực của BC(4)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(5)
Từ (1),(4),(5) suy ra A,O,K thẳng hàng
b: Xét ΔDBC và ΔECB có
\(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
BC chung
\(\hat{DCB}=\hat{EBC}\) (ΔOBC cân tại O)
Do đó: ΔDBC=ΔECB
=>DC=EB và DB=EC
Ta có: DB+AD=AB
EC+AE=AC
mà DB=EC và AB=AC
nên AD=AE
Gọi I là giao điểm của hai đường trung trực của các đoạn thẳng AD,AE
I nằm trên đường trung trực của AD
=>IA=ID(6)
I nằm trên đường trung trực của AE
=>IA=IE(7)
Từ (6),(7) suy ra IE=ID
OD=OE nên O nằm trên đường trung trực của ED(8)
IE=ID nên I nằm trên đường trung trực của ED(9)
AE=AD nên A nằm trên đường trung trực của ED(10)
Từ (8),(9),(10) suy ra A,I,O thẳng hàng
mà A,O,K thẳng hàng
nên A,I,O,K thẳng hàng
=>ĐPCM