\(1\le x\le2\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của:

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

Ta có:

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{3}{x}+1+\frac{3}{3-x}+1\)

\(=3\left(\frac{1}{x}+\frac{1}{1-x}\right)+2=\frac{9}{x(3-x)}+2\)

\(x\in [1,2]\Rightarrow x,3-x>0\)

Áp dụng BĐT Cauchy ngược dấu: \(x(3-x)\leq \left(\frac{x+3-x}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow T\geq \frac{9}{\frac{9}{4}}+2=6\) hay \(T_{\min}=6\)

Dấu bằng xảy ra khi \(x=3-x\Leftrightarrow x=\frac{3}{2}\)

------------

Mặt khác: \(1\leq x\leq 2\Rightarrow (x-1)(x-2)\leq 0\)

\(\Leftrightarrow 3x-x^2\geq 2\Leftrightarrow x(3-x)\geq 2\)

\(\Rightarrow T\leq \frac{9}{2}+2=\frac{13}{2}\)

Vậy \(T_{\max}=\frac{13}{2}\Leftrightarrow \text{x=1 or x=2} \)

17 tháng 5 2018

thank sir , sir giải hộ em cái bài này luôn với ạ giờ em đăng

18 tháng 5 2018

\(T=\frac{3+x}{x}+\frac{6-x}{3-x}=\frac{\left(3+x\right)\left(3-x\right)+x\left(6-x\right)}{x\left(3-x\right)}=\frac{9-x^2+6x-x^2}{x\left(3-x\right)}=\frac{9+6x-2x^2}{x\left(3-x\right)}\)

Đặt T = a

<=> \(\frac{9+6x-2x^2}{x\left(3-x\right)}=a\)

<=> \(9+6x-2x^2=3xa-x^2a\)

<=> \(2x^2-6x-9=x^2a-3xa\)

<=> \(x^2\left(2-a\right)-x\left(6-3a\right)-9=0\)

Phương trình trên có nghiệm 

<=> \(\Delta=\left(6-3a\right)^2+4.9.\left(2-a\right)\ge0\)

<=> \(36-36a+9a^2+72-36a\ge0\)

<=> \(9a^2-72a+108\ge0\)

<=> \(\left(a-6\right)\left(a-2\right)\ge0\)

<=> \(\hept{\begin{cases}a\ge6\\a\le2\end{cases}}\)

Vậy \(Min_T=6\) <=> \(x=\frac{3}{2}\)

và \(Max_T=2\Leftrightarrow x\in\varnothing\) (Không tồn tại giá trị lớn nhất của x ) 

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123

NV
14 tháng 11 2018

\(T=\dfrac{3}{x}+1+\dfrac{3}{3-x}+1=2+3\left(\dfrac{1}{x}+\dfrac{1}{3-x}\right)\ge2+3.\dfrac{4}{x+3-x}=6\)

Vậy \(T_{min}=6\) . Dấu "=" xảy ra khi \(x=3-x\Rightarrow x=\dfrac{3}{2}\)

14 tháng 11 2018

sao mình ra GTLN là 6

GTNN thì mình không biết làm

Mình dùng delta nhé

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

22 tháng 5 2019

x,y phải dương nữa chứ bạn

18 tháng 1 2017

Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).

Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)