Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :
A = 3k + 2
B = 6q + 2 hoặc 6q + 5
6q + 2 có 6q chia hết cho 3 => 6q + 2 chia 3 dư 2
6q + 5 = 6q + 3 + 2 có 6q + 3 chia hết cho 3 => 6q + 3 + 2 chia 3 dư 2
Vậy A = B

Tham khảo bài làm :
Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)
*Chứng minh an là số tự nhiên.
Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:
\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n = k + 1 hay:
\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)
\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)
Vậy ta có đpcm.
Còn lại em chưa nghĩ ra

Lấy ngẫu nhiên 101 số từ tập A. Giả sử 101 số đó là: \(a_1,a_2,...,a_{101}\) ta có thể biễn diễn 101 số đó về dạng.
\(a_1=2^{k_1}b_1;a_2=2^{k_2}b_2;...;a_{101}=2^{k_{101}}b_{101}\) với \(b_1,b_2,...,b_{101}\)là các số lẻ và:
\(1\le b_1,b_2,...,b_{101}\le199\)
Ta thấy rằng từ \(1\rightarrow199\)có 100 số nên tồn tại 2 số \(b_m,b_n\) sao cho: \(b_m=b_n\).
Hay trong 2 số \(a_m,a_n\)có 1 số là bội của số còn lại.

câu1)
ta có ĐK...
xét x=0 là nghiệm,
xét x>0 thì vế trái <2
xét x<0 thì vế trái >2
vậy x=0