
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2

Chữ số tận cùng của \(2^{202}\) là 4.
Chữ số tận cùng của biểu thức A: là 7

1) \(\left(9^9\right)^{2013}\)= 1026936315936466644007655232277334158156103408524055441368417162984522655091086906314108445516502484646730803186280183953735060258580738890779016567783128742277443266030645053000370688213001912666003362130414573924427617357704809050499482091752946944217365290524293447277785875056747263299466460038193422474667528424271680418770747397115304929638956453828239332110052185072915834267291697848663307334639508752470930402611542381620336575749463842313193588247628614804122537752157307173145355712036732199577500474260456976474502238941276601372253245007736761993906930051900170289818510239277392738996048088854235632472636323753689820558697883030218432519322622343591607096103803493578687156569416803248303477626186380247107570572687865343338300100118924192603518275807054239857318826838307416910902040259036049621875924220127196379239471561826559434563423075800724469900400300040159052195977359572353303973703643001571087917913137076064709413307255417079499363284247140649746269536516691680327257452245440138266397448556568053001097875042519788926905739503327586366847865493444133449455506431848468934231630697152102459587693955546794340951359973974246571971095730740103946650501885793455461393041504593666429863927205865731260191652014957294105725354606028065809108585710828735023586052037624862615881255170223986612277140259867308693692913524330929799646164708688765601512109313349574509822781385464558749433184595170926935858749974088068616143705100144672164593160370193136604675657191559134608219409953517986494243514788971966486689395199320932818055296903344541638617207415815650906818484611000987765549841179613358592946528510547663264466169888514147018943628319934979815358306853694250579369170285224662060226941844533083450895413144426876575931247934341990474013932087924206429013839339619081485400687502321763335850155938686962990356280348259890705858083464218700873277406929113812270773100931724721446319950200734938259274420684561062207311929135379317795625970174331692616532968812290672192719632301088918105516980649956654688416491404227850833003606454955813322669703124707051088776330657942143367560755895491239632785346742400333521634988363706325830086758733003107032055269088858396206070942576145524447341617529555079020662989965232684156212812549436269738037891399615703721380901090915261705306504796587364430270191516149142247702882291499181275124401464836481565285225966356210150534392969830036474527726739334735542814296748215232174711227692064595037307803669170817046315776900108143303972394011595827736831894502369837041899011411462368103059877154789325324218339673368994146645015446471646714044170017089013107039431723566924973616793942222553191471205340039459102517004652793394193180872771770081049022665745745801492519226280222379337791126765095526665708900958521211283690589438139701827069810355628457689462449174192472454823277707703931769511523402172088323346511339966064303882539230522459494582356765308832632744209535331162834962460212181389503850237088696407511771903988580976017142272712992447383945731576824359740331987063655005516090030376992271875220653120183170542438567583462347089812079841488460323755675849648342224979798891349597114494885781007080896214002744995783915850907230933522861281601415358680918097776532712162793713404996768434536910832959969822168089790423725364669610463828931705893795678670450265470501857833192504905238157437136407924482707690074600704467004460751493442877418540656968811357181297883496033956346452044527520385438779942609030326217555091398587968532301339527314058490612128489860041998799368618820443539109425221847139081891713039087218286851930899483989721898294944242901957324795291290538049075541991359845781927616941778628448234758137009317434798187748910014905940960363520220484339080730076833212071982879793665358440454469434838321254919208741817386778536122176850668886430875598694660895328200311197435920543048271551229348941074255188905794440996596273172913590736916479452088440747449846094215986199905169079998682043901493347123203691856739036583513230518566225891359066972171127103587649854469267685017308377781513871345173585295949758250554213972099633887299424620149370085422553180576977919929740533560073700690325720729082093104494502422759523112838712027606438422754640293436106826607258752572572701200278832907762014653136642892655305845698597681850307268402593458663789848395823450866281803118071552452077617109401349402101367672811015042391494471013423800348706308123842366833092501553905659790084088538093176919716972583354144568901310426642434019786996725862398237165792755405187234720936153283078807801977180417909881940041894864954027083459707902989105399082477860011074755831567742002921262180561813216003113025741566417269149294529269755930423136814550198894165317271092065044318125427494890824949593586767565200787439396106655092028278013360450558783644656940947679295287600004765992481889190429827022207642135788661174477435648180566286191330333295323147060741100629863095687029722409936853895283432691463126507353983593892497046958267783905130426170111927280910047070050612100937946498873103263031074976261957513993115802752721579872777080872360411360260782894504855073589667054506530591747900059485189087277248382614161056654649707928694996013355672002986520721307090648502637466261888739154517767512272941143864465965147818438271394054272035613676863628666879330126789382606298763582826669099347506539078324626973229584105863547757428142498322510987515363131810574081188857112711365848275064867382051891733551113839596911899765594904328468503931363859338150357817639813486073345263438062122011530183605498044471970431607359800791967264010218608285723467812123749036732142403008106602542464783775422435298585807448543516258845465655844111403161845529791780538289442909425354548851932392694303359705164700204358597043402141152819226709200628591863459700806259572405836139550184313961581046924609874157901030613827584947312562317464572222700841964911009267637169004385041130563743953571504906172159750428127399350300931402070479301670529170615856011832858722307113041690041755657728678726419372059691255470144663531274082779335381740160578026303644613212900225878103916223041133352804873266163657903158574192828632243175807540088502548453528803110596011739655137032459469927760677051481785815318999046215578888702463906792131094213645537357852611606076013276773613390990388173633245700515545076816133542599598499949723848446846040903867776433205190899458255921949520148434244684972358450429478617399109483668411833154341343331596817113688925531133966594356450437151847089918527052466610924085855975570724149296945214723797165852817441094282320203756276507525476812533694746988614602627000447075297716670810246470607294951837087981880185870081483970273663390845791653147404366837274335890164587108250142705517640988039479752905527665703615863346026282171391193190112534294544585726008204363693191833965757306207085939261792334572843940733961127799890504819910614969470093349277145503657154837433994483870782259224359663573131541668881840466987976168916438787978818848230967569497655841297878026184394003642764079687952562476576146449442282665665627062431983400658177836470304870687728154854192613653152535493360438487180031985143543617912832793367412349947726683917996081583384702918734566505578806128946841857562087241435004087070789542240773581921928005901690258672269092590124500796445719082697792225382784151790938676825306626865188529596442803922777148260497623892895270534600217592445771483895959368006353307304241803967957192744250039467817705371796676384795268591135125140223131933633348757546184329503534513723177842537591210082615190216661722192968680477180317993874327059375746383249204423388877854621585002142950138500998980754470880782997405789372694278455215744885287053078760429841030680604256082019513240058465876476686113482531622663644883596054171375493255831576420272830752431634417232232882465379393173662913872082870209808446797323357040155190328323992315789585266903266828863588330335547870366782441908444367043692439803818881157436020122216202518524682411877554723277000405601285026176606291268217957356053077981068457723039154415074902180316582650007989729437021464604582253864059586460048260679487724704675866586698851810229896553877362626216059041696538021938652043271314984392204765164687779233220067263693213225060451042319669294233260313335379542045376715328477015835543606860048626014264988155465791046017596596488729705124299932904937714100497822944619926932556076021781638353926980618924509567280552511774898178183380408535332274238263462857749564025886673346241689220239194135371213590607731864979855691221933163266128212992157311201100582332659440876199030841741026154166377915370598488067078371415319375427727871951800558420118475796978600403940948465456769302708717449307325121955867230292193107738235633827754864717358892601233377095074936732132284373204027933918066684558971240197355111463383881302485003552384368392525154670448582107380907112689572461895703657643559372285238675498922192204428732862650671502772426820495422208684425663259876566065182166188271090573539769385459220918977757051198100386641318298053260505549618871966912908666212193523708164550173741867042506350232610165673912771635902190474664590911859675736148212118522255524812604463775058875135451329172876439928813868904160614003825581937604612326177792821096132608244238560824137851366110812005463287141899355151442378684050172236810364678989505885190074214284284959005557252055717378597484460165885696223840619316331040542397531108669751210899626818870762213291033776300895989013816097525277221258955433345550132182061450410343607884073951739721319091655297604945196190262079363901299620303646225638620166689963605526844298501915881282126682238782636151617537506673786427348984008182232675423156980717768277374147919112069962326042326866062911778799566351427521992050027454909678046580762578435439410173495078163510520075641724912805...
1)
a) Theo đề ta có:
(99)2013 = 99.2013= 918117
Ta có:
91 = 9 có chữ số tận cùng là 9
92 = 81 có chữ số tận cùng là 1
và 918117 = 92.9058. 9 = (92)9058 .9 ( mình giải thích thêm là mình nhân 9 để cùng cơ số và cộng các tử lại là 2.9058 + 1 = 18117)
Vì 92 có chữ số tận cùng là 1
Nên (92)9058 cũng có chữ số tận cùng là 1
\(\Rightarrow\)918117 = (...1) .9
\(\Rightarrow\)918117 = (...9)
Vậy chữ số tận cùng của (99)2013 là 9
b) Ta có:
20081 = 2008 có chữ số tận cùng là 8
20082 = (...4) có chữ số tận cùng là 4 (vì 8.8=64)
20083 = (...2) có chữ số tận cùng là 2 (vì 4.8=32)
20084 = (...6) có chữ số tận cùng là 6 (vì 2.8=16)
và 2008100 = 20084.25= (20084)25
Vì 20084 có chữ số tận cùng là 6
Nên (20084)25 cũng có chữ số tận cùng là 6
Vậy 2008100 có chữ số tận cùng là 6

Thử dùng phương pháp hồi quy xem nào!Mình không chắc đâu nhé,mới học.Có gì sai xin thông cảm.
Hai chữ số tận cùng của 10072014 chính là hai chữ số tận cùng của 72014
Ta viết lại 2014 dưới dạng tổng quát: 2014 = 4k + 2 (ở đây k = 503 nhưng mình không cần tính)
Ta cần tìm chữ số tận cùng của: \(7^{4k+2}=7^{4k}.7^2\)
Ta có: \(7^{4k}\equiv01\) tức là 74k có hai chữ số tận cùng là 01.
Suy ra \(7^{4k+2}=7^{4k}.7^2=\left(..01\right).49=\left(...49\right)\)

x-y = 3 =>x=3+y
=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
Áp dụng BĐT chứa dấu giá trị tuyệt đối:
\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)
=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0
=>\(-1\le y\le3\)
Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3
B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)
Vậy chữ số tận cùng của A là 1

Các chữ số có tận cùng là a khi lũy thừa bậc 4k + 1 thì chữ số tận cùng không thay đổi.
Nên A có chữ số tận cùng là chữ số tận cùng của tổng sau:
\(1+2+3+...+18=\frac{18\cdot19}{2}=9\cdot19=\left(...1\right)\\ \)
Vậy A có tận cùng là chữ số 1.

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "
chúc bạn thành công
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)
chúc bạn thành công
bạn vào câu hỏi tương tự nha phương hà
bạn vào câu hỏi tương tự nha